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EXECUTIVE SUMMARY  
  
  
A better understanding of top-down estimating practices, and the resulting increases in the 
accuracy of budgeting efforts, may have significant contributions to public transportation agencies 
in their efforts to allocate agency funds more efficiently.  This report thus provides an analysis and 
evaluation of top-down estimating methodologies to assist MDT in its early estimation of its 
construction costs.   In so doing, the research effort applies an artificial neural network 
methodology, as well as a multiple regression estimation model, to compare prediction accuracy 
of proposed estimating approaches to those achieved under MDT’s current practices. Four separate 
estimation equations are provided to predict agency costs under three broad project work types.  
Together these groups of work account for more than 80 percent of the agency’s construction 
program.   
Due to the critical nature of input selection for the cost estimation methodologies, the study 
allocated considerable effort to the proper identification of project variables that are often readily 
available at the early stages of an agency project.  Upon conducting an extensive review of MDT’s 
budgeting and cost estimating efforts, and following a survey of the agency experts on the 
identification of the most salient project attributes with the dual-objectives of low effort and high 
accuracy, the team was able to propose a rational method for top-down variable selection.  
Selected variables were further tested in their explanatory power of construction costs through the 
application of two cost estimating methodologies—multiple regression and artificial neural 
network methodologies. Both methods are shown to provide sizeable improvements over the 
agency’s current levels of prediction accuracy for its construction costs.  Potential accuracy gains 
are also demonstrated to depend on project work types.  The comparison of mean absolute 
percentage errors across different estimating methods confirms that the potential benefits from the 
proposed methodologies are expected to rise as the project level complexity and uncertainty 
increase.  New construction and bridge replacement projects, for instance, are expected to gain the 
most in estimating accuracy since these two groups seem to exhibit considerably higher levels of 
deviation from the MDT’s preliminary cost estimates.   
To facilitate MDT’s implementation of the suggested methodology described in this report, a cost 
estimation methodology was also presented in an Excel spreadsheet format.  This achieves two 
goals. First, it provides an accessible tool to make top-down cost predictions for agency planners 
during the budgeting stage based on MDT’s historical project data. Second, it furnishes a process 
through which the proposed model can be improved as new project information becomes available.  
Ultimately, the insights gained from this study are expected to contribute to a better formulation 
of the agency’s early cost estimation and budgeting efforts.  
Finally, the report outlines potential research areas for future work.  The integration of early 
project-level data with actual construction costs and tailoring MDT systems with early estimating 
in mind remain logical next steps to fully attain the efficiencies suggested through the analysis 
provided in this report.     
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CHAPTER 1. INTRODUCTION  
Background Summary  

The issue of accurate estimating is essentially tied to the efficient use of available public capital 
(Janacek 2006). Early estimates conducted during the planning phase often turn into project 
budgets before the final scope of project work is adequately quantified (Anderson et al. 2007; 
Alshanbari 2010). Additionally, since preconstruction costs are by definition a small portion of the 
total project delivery cost, they are typically estimated as a standard percentage of estimated 
construction costs. Hence, if the capital project is underestimated, preconstruction costs will be 
similarly underestimated. A 2002 study involving 258 transportation projects collectively valued 
at $90.0 billion (Flyvbjerg et al. 2002) found that 86% experienced actual costs that were on 
average 28% higher than initially estimated. That study concludes that “underestimation of costs 
at the time of decision to build is the rule rather than the exception for transportation infrastructure 
projects” (Flyvbjerg et al. 2002, italics added). Using Flyvbjerg’s cost growth would mean that the 
agencies delivering these projects would be short $1.4 billion in the preconstruction phases of 
project development. The fact that project scope and quality is defined during the planning and 
design phases of the project development process means that an accurate estimate of construction 
costs will furnish sufficient funding for the early phase planning and design activities.  
MDT Project FHWA/MT-08-007/8189 Highway Project Cost Estimating and Management 
furnished a bottom-up conceptual estimating procedure that appears to be risk-adjusted but utilizes 
extremely small sample populations. The study found that MDT sees a 46% growth in construction 
cost from programming to construction completion. Montana’s small population and its huge area 
makes it imperative that MDT squeeze every last penny out of its federal and state highway 
funding to provide as much service as it can afford. So, reducing cost growth from the early 
estimate is a priority. To do so, requires that cost certainty be increased and that means better 
conceptual estimates.  
NCHRP Report 574: Guidance for Cost Estimation and Management for Highway Projects 
During Planning, Programming, and Preconstruction expresses the motivation for this MDT 
research project in this manner:  

“Over the time span between the initiation of a project and the completion of construction, 
many factors influence a project’s final costs. This time span is normally several years, 
but for highly complex and technologically challenging projects the time span can easily 
exceed a decade. Over that period, numerous changes to the project scope and schedule 
will occur.” (Anderson et. al 2007).  

Problem Statement  
States with small populations and large amounts of highway lane miles to service must use every 
penny appropriated for design, construction and maintenance as wisely as possible. To do so, 
requires that early estimates of project costs are not overly inflated, potentially preventing precious 
federal-aid funding from being obligated on other projects. Worse yet, if the budget overage is 
found late in the fiscal year, the incremental overage can be lost to the state by FHWA year-end 
reapportioning (Anderson et al. 2006).  The other side of the coin is a concept called “optimism 
bias” where engineers unintentionally underestimate project cost and keep the project “alive” by 
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making unrealistically optimistic assumptions in the project’s estimate and schedule (Jennings 
2012; Flyvbjerg et al. 2002).  
The issue is exacerbated by the fact that early costs estimates made with the least amount of design 
detail often become the final project budget. The result is to create a bias either toward 
overestimating actual costs to provide financial room for the scope to grow as the project 
development process proceeds (Jennings 2012) or toward underestimating costs because of 
misplaced optimism (Flyvbjerg et al. 2002). Research has shown that the unintended consequence 
of over estimating is that project managers will attempt to use all the funding available within a 
given project’s authorization to avoid losing it rather than return the overage as soon as it is 
identified (Anderson et al. 2006). Thus, the efficient use of available capital is compromised 
(Janacek 2006). The solution is to develop a system where early estimates can be developed using 
rationally derived contingencies for the unknowns at the time of the estimate (Anderson et al. 
2006).  
This research seeks to leverage the work completed in NCHRP 15-51: Guide for Estimating 
Preconstruction Services Costs, by extending the parametric models developed for preliminary 
engineering to the estimating of construction project cost at the earliest stages of project planning 
and development. It will deliver a top-down cost estimating model that uses “stock” spreadsheet 
and database software without the need to purchase special software or hardware (i.e. MS Office 
products only).  

Research Objectives  
The final product will permit MDT’s project managers to prepare cost estimates for design and 
construction of typical MDT capital improvement and rehabilitation projects.  Hence, the technical 
objectives of the study are as follows:   

• To develop a framework for building a database from MDT bid tabulations.  
• To develop a parametric estimating model that can be fed from the database using a neural 

network to assemble CERs and produce top-down estimates at early stages of project 
development.   

• To develop a stochastic cost modeling system that will assist MDT engineers in calculating 
rational contingencies for early estimates.   

CHAPTER 2. METHODOLOGY  
This chapter firstly describes how the research team divided up the scope-of-works for each of the 
different models to be constructed. Secondly, it describes how the ‘global database’ for the cost 
estimating model was created through combining multiple data sources. Finally, the Chapter 
explains the methodology to create and use the artificial neural network for predicting construction 
costs.   

Model Scope  
MDT currently divides projects into the work-types shown in Table 1. It was determined that no 
single data-driven cost estimating model could encompass these work-types together due to the 
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vast difference in scopes. Therefore, the research team analyzed work-types which MDT perform 
and the frequency of each.   

Table 1. Break down of the work-types at MDT  
Construction  
110 New Construction  120 
Relocation   
130 Reconstruction – with added capacity   
140 Reconstruction – without added capacity   
141 Reconstruction – remove and replace culverts   
150 Major Rehabilitation-with added capacity   
151 Major Rehabilitation-without added capacity   
222 Bridge Replacement with a culvert with no added capacity  
223 Bridge Replacement with a Culvert while adding capacity   
Pavement Preservation  
160 Minor Rehabilitation   
170 Restoration and Rehab – PCCP   
172 Restoration and Rehab - Facilities   
180 Resurfacing – Asphalt (thin lift<=60.00mm) 
(including safety improvements) (Pavement Preservation)   
181 Resurfacing – Asphalt (thin lift<=60.00mm) 
(Scheduled Maintenance)   
182 Resurfacing – PCCP   
183 Resurfacing – Seal and Cover   
184 Resurfacing – Gravel   
185 Resurfacing – Crack Sealing   
Bridge  
210 New Bridge   
220 Bridge Replacement with added capacity   
221 Bridge Replacement with no added capacity   
230 Bridge Rehabilitation with added capacity   
231 Major Bridge Rehabilitation without added capacity   
232 Minor Bridge Rehabilitation   
233 Bridge Preservation   

Spot Improvement  
234 Bridge Protection  
310 Roadway and Roadside Safety Improvements   
311 Railroad/Highway Crossing Safety Improvements   
312 Structure Safety   
Miscellaneous  
313 Pedestrian and Bicycle Safety   
410 Traffic Signals and Lighting   
411 Signing, Pavement Markings, Chevrons, etc.  
412 Miscellaneous Electronic Monitoring or Information  
Services   
510 Environmental   
520 Landscaping, Beautification   
610 Maintenance Stockpiles   
620 Bicycle and Pedestrian Facilities   
660 Historic Preservation   
710 Pedestrian and Bicycle Facilities CTEP   
Facilities  
111 New Construction – Facilities   
  

  
To suitably assign work-types to each of the models, basic statistical tools were used to analyze 
which work-types occur most frequently and which account for the most significant proportion of 
cost to MDT. Statistical analysis was based on 1,012 different projects provided to the research 
team for projects constructed between 2007 and 2014. Figure 1 shows an analysis of the major 
work-types broken down by cost and frequency. It is observed that resurfacing is the most common 
work-type (431 of 1,012 projects studied). However, by total expenditure, construction projects 
represent the greatest cost to MDT. Spot improvement projects are more common than bridge 
projects, however, the total cost of the spot improvement projects is significantly lower than that 
of bridge projects.   
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Figure 1. Analysis of MDT work-types by frequency and cost  
Figure 2 shows that the total cost of spot improvement, miscellaneous and facility type projects is 
very small relative to the total expenditure. Based on the analysis of Figures 1 and 2, it was decided 
to initially trial three different estimating models only and not complete models for the other minor 
work types as these only account for a small proportion of costs. The three estimating models will 
be:  

• Construction  
• Resurfacing  
• Bridge  

These models will encompass most projects (by cost) at MDT.   

  



www.manaraa.com

Final Report – July 2017   

 

      Page |  6    
      

Figure 2. Breakdown of MDT work-types by cost of the projects  
Although construction projects are the largest by cost at MDT, the research team commenced by 
building a model for pavement perseveration work-types only. Through meetings at MDT, it was 
determined that these pavement preservation projects would be the most predictable work-type.   

Input Variables  
Previous authors of publications involving data-driven artificial neural networks to predict 
construction costs have recognized the importance of selecting the correct input variables for the 
estimating model. From a review of relevant publications and interviews at MDT, 29 possible 
input variables have been identified. These are shown in Table 2.   
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Table 2. Input variables that were recognized at MDT through interviews  

Design related attribute  Roadway information attribute  
1  Design AADT  19  Urban or rural project   

2  Design speed  20  Construction on Native American 
Reservations   

3  Start and end stations, length and 
width  21  Site topography   

4  Intersection signalization and signage  22  Existing surfacing conditions and 
depths   

5  Horizontal and vertical alignment  23  Number of intersections in project   

6  Extent of changes to the existing 
intersections  24  Number of bridges in the project 

scope  
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7  Typical section   Construction Administration attribute  
8  Curb, gutter and sidewalk   25  Traffic Control - closures or detours   
9  Bridge type and complexity   26  Environmental permitting  

10  Volumes of excavation  and 
embankment   27  Letting Date       

11  Geotechnical - subsurface and slope 
recommendations   28  Context sensitive design issues, 

controversy   
12  Bridge deck area   29  Contract time   

13  Hydraulic recommendations and 
culverts     

    
  
  
  
  

14  Storm drain extents   
15  Bridge span lengths   
16  Foundation complexity of the bridge   
17  Right-of-way acquisition and costs   
18  Extent of utility relocations and costs   

  
Typically, when artificial neural network models are created then different combinations of the 
inputs to that model are included through trial-and-error. The combination of inputs which results 
in the lowest estimating error is then selected as the final inputs. To aid the selection of inputs for 
this project, the research team conducted a ‘Cost Estimating Survey’ at MDT to help understand 
each of the proposed input variables. The survey and results are briefly described in the following 
section. The final recommended input variables are described in Chapter 4.   

Survey and results  
A total of 31 preconstruction engineers at MDT answered five questions on the 29 potential input 
variables shown in Table 2. These 5 questions were:   

1. When do you typically compute or identify this variable in the 5 preconstruction stages?  
2. Rate the typical effort required to compute or identify this variable  
3. If required, what is the first stage that you could roughly compute or identify this variable?  
4. Rate the additional effort required to identify or compute this cost influencer at an earlier stage  
5. How influential do you believe this variable is on construction cost? (assume a major 

reconstruction or major rehabilitation)  

The cost estimating survey was developed with assistance from MDT employees to ensure that the 
terminology and questions made sense to participants. The survey was distributed online with a 
link at MDT by Highways Bureau Chief to obtain the best possible response rate. Appendix C 
contains the full survey questions and summarized results. Two interesting findings, which were 
used by the research team to select the input variables, are described below.   
Firstly, the research team recorded when MDT typically knows each of the 29 input variables 
(Question 1); and secondly, what is the earliest possible stage that MDT could know that input 
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variable (Question 3). This insight is useful so that the estimating model, and hence the ‘global 
database’, can contain input variables that can be calculated or computed at the conceptual 
estimating stage. Figure 3 summarizes the average responses to Questions 1 and 3 from the survey. 
It can be observed in Figure 3 that the first 10 of the 29 inputs are known prior to, or shortly after, 
the preliminary field review (PFR) cost estimating stage. As an example, respondents generally 
perceived that once a project is nominated, the urban/rural indicator is known immediately, so too 
is the project’s location with respect to a Native American reservation. This makes sense because 
these inputs are determined as soon as a project has been selected and the general proximity 
recognized.    
It is apparent in Figure 3 that some of the input variables are not known or computed until well 
after the PFR cost estimating stage. These inputs include traffic closures, storm drain extents and 
right-of-way acquisition costs. This finding was important for the research team, but it did not 
necessarily mean that those inputs required exclusion from the cost estimating model. Instead the 
research team realized that these variables would not be known to a high degree of confidence or 
precision, therefore top-down approximations of that value would need to be made.   
  

  
Figure 3. Understanding when MDT are knowledgeable on each of the 29 input variables  
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(Questions 1 and 3 from the survey)  
Secondly, the results of the survey were used to create a rational input variable selection method. 
An entire academic paper has been written to explain this process (Appendix D). Essentially, the 
research team investigated which variables MDT perceive as having a high influence on the 
construction cost, but require a low level-of-effort to compute or identify. It was proposed that 
these high-impact and low-effort variables should be added to the cost estimating model first to 
minimize the efforts required by MDT to conduct the conceptual estimate yet produce reasonable 
results. The survey results, with the proposed high-impact and low-effort variables, are shown in 
Figure 4. Note that the data-labels from 1 to 29 correspond to the input variables in Table 2 shown 
earlier in the report.   
  

  
Figure 4. Understanding the level-of-effort and influence on the construction cost for each of the 
29 input variables (Questions 2 and 5 from the survey)  
The final recommendation of input variables for the pavement preservation model was based on 
the survey results in this section, interviews at MDT, literature reviews and trial and error using 
the model. Those recommended input variables are shown in Chapter 4. Long-term, once the final 
inputs are agreed upon, MDT could minimize the inputs stored in the ‘global database’ used for 
the cost estimating model and reduce its data collecting efforts.  

Global Database Construction  
To create the database (Task 3) for the cost estimate, multiple databases from MDT had to be 
integrated. Figure 5 schematically shows the multiple MDT databases that were combined to form 
the ‘global database’ for the cost estimating prediction model.   
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Figure 5. Incorporating databases to form a ‘global database’ for predicting construction cost 
with the model  
Combining the databases was a resource intensive task for the research team due to:  

• contradictions amongst the multiple databases,   
• understanding the many data attribute fields,  
• varying degrees of accuracy from one data source to another,  
• ensuring that all of the same projects were aligned,   
• finding data points that match those from the 29 suggested by MDT, and   
• manual text mining of PFR reports to convert into a useable data format.  Each of the 

databases shown in Figure 6 are described in detail below.   

PPMS and SiteManager® databases  
The PPMS database stores information during the preconstruction stages of the projects, while the 
SiteManager® database is data collected during the construction stages of the project. This original 
database was provided to the research team and contained information from 1,012 projects of the 
different work-types.   
This database was narrowed to include only pavement preservation work-types commencing 
construction between 2009 and 2013 (5 years of data). These years were selected because:  
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1. data in earlier years is sparse, and   
2. data for projects completed in later years (2014 or 2015 start dates) do not contain all the final 

construction cost information.   
SiteManager® data included final actual construction cost for each of the projects. To account for 
inflation 3% was applied to all projects in the ‘global database’ to bring the cost up to a base year.   

PFR data extraction  
The Preliminary Field Review (PFR) reports are completed by the district design project managers 
at the conceptual estimate stage. The reports, which are typically 6-10 pages long and include a 
cost estimate, are sent to the transportation commission from MDT for funding approval. The 
reports detail project information such as the expected scope-of-works, traffic impacts and 
highway dimensions at the conceptual estimating stage. During Task 3 the ISU graduate research 
assistant visited the Helena office and extracted all PFR reports from the Document Management 
System (DMS). This was completed using the methodology outlined in Appendix A. Note 
however that this procedure is only recorded for reference and no further reports need extracting 
for any work-type.   
During the research meetings held with MDT on 26th and 27th February 2015, the research team 
realized that information contained in the PFR reports contained valuable attributes to include in 
the cost estimate model. Project attributes known at the time of the PFR stage are exactly the types 
of information available to conduct the cost estimate, thus are important cost predictors. The 
challenge with this project information contained in the PFR reports is that very little of the 
information is transferred to the PPMS database. This information in the PFR reports is textual 
information that needs to be converted into a more useable data format.   

GIS meta-data  
GIS information is specific to the roadway and not tied or linked to a project. As such, the GIS 
meta-data does not contain start and stop locations of projects. Data is instead recorded at set 
distances along the highway as key highway features change. Despite this disconnect to project 
information, the GIS information still contained relevant corridor attributes which the research 
team could utilize, for example the widths of roadways. GIS meta-data was manually searched in 
project locations to extract relevant corridor information.  

TIS database  
The TIS database contains final design information. This database is constructed by extracting 
information from final plans. From this database, basic project information (length, width, start 
RP and end RP) were extracted. Length and width information from the multiple databases could 
then be compared for consistency.   

Completed global database  
A summary of the completed ‘global database’ for pavement preservation projects is shown in 
Figure 6. Because the 29 possible input variables for the ‘global database’ were decided prior to 
collecting the data, it was not possible to directly find input variables that matched those specified. 
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As a result, the research team identified ‘measures’ to best represent each of the 29 input variables. 
These measures and a summary of the inputs are both shown in Figure 6.   Appendix B provides 
further information on the complexity rating system referenced in Figure 6. 
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Date: 7/30/2015 
   Data statistics of the 189 projects and the input variables 

Complexity Rating System Binary 
rating 

Other data input 
Suggested 29 inputs: Available: Measures: Data 

Source 
High Medium Low Yes No 

1 
Urban or rural 
project Y 

Urban indicator PPMS    41 148  

District PPMS 

     District 1: 57; District 
2: 54; District 3:  
42; District 4: 18; 
District 5: 18 

2 

Construction on 
Native American  
Reservations Y 

Binary Y/N 
indicator 

PPMS, 
PFR 

   
15 174 

 

3 Context sensitive 
design issues          

4 Design AADT Y 

AADT at let year GIS 
     AADT continuous 

range from 100 to  
20667 

Highway 
functional 
classification PFR 

     Collector: 38; Minor 
Arterial: 57;  
Principal Arterial 
(interstate): 34;  
Principal Arterial 
(non-interstate): 60 

5 Design speed(s) Y Design Speed PFR      Range from 30mph to 
70mph 

6 

Site topography 
(steep, flat or 
undulating terrain) Y Terrain PFR 

     
Flat: 74; Rolling: 92; 
Mountainous: 23 

7 

Start and End 
Stations, Length and  
Width  Y 

Length, width, 
area 

TIS, PPMS, 
PFR 

     Length ranges from 
0.6 miles to 26.84 
miles 

      Page | 13   
      



www.manaraa.com

Final Report – July 2017   

 

8 

Existing surfacing 
conditions and 
depths 

    

 

    

9 Number of 
intersections in 
project 

         

10 

Number of bridges in 
the project scope 

Y 

Number for deck 
treatment 

PFR 

     Range from 0 to 9 
bridge deck 
treatments for all 
projects 

11 

Intersection 
signalization and 
signage Y 

Signage and 
pavement 
marking 
complexity PFR 114 57 18 

   

12 Letting Date  Y 
Let quarter and 
year 

      Year 2009: 47; Year 
2010: 50; Year 2011:  
32; Year 2012: 39; 
Year 2013: 21 

13 Horizontal and 
Vertical Alignment          

14 

Extent of changes to 
the existing 
intersections 

    

 

    

Figure 6. The 29 suggested input variables, designated measures for that input variable and the data source(s) of each measure  
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Date: 7/30/2015 
   Data statistics of the 189 projects and the input variables 

Complexity Rating System Binary 
rating 

Other data input 
Suggested 29 inputs: Available: Measures: Data 

Source 
High Medium Low Yes No 

15 

Typical Section (depths 
of surfacing and 
aggregate) Y 

%mill PFR 
     Proportion ranges 

from 0 to 1 on 
continuous scale 

%overlay PFR 
  

 
  Proportion ranges 

from 0 to 1 on 
continuous scale 

16 
Curb & Gutter and 
Sidewalk  Y 

ADA/sidewalk 
complexity PFR 167 11 11 

   

17 

Bridge type (steel or 
concrete) and 
complexity 

         

18 

Volumes of excavation 
and embankment     

 

    

19 

Geotechnical - 
subsurface & slope 
recommendations Y 

Geotechnical 
complexity PFR 155 23 11 

   

20 Bridge deck area Y 
Area of deck 
treatments PFR 

     0 square feet to 
118,000 square 
feet on a 
continuous scale 

21 
Traffic Control - closures 
or detours Y 

WZSM PFR      Level 1: 10; Level 2; 
91; Level 3: 88 

Railroad 
complexity 

PFR 168 21 0    

22 

Environmental 
permitting 
requirements- wetlands 

         

23 

Hydraulic 
recommendations and 
culverts 
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Figure 6. - continued 

24 Storm Sewer extents     

 

    

25 
Bridge span lengths 
(between supports)          

26 Foundation complexity 
of the bridge          

27 Right-of-way acquisition 
and costs 

Y ROW complexity PFR 186 3 0    

28 Extent of Utility 
relocations and costs 

Y Utility complexity PFR 85 52 52    

29 Contract Time Y Contract time PPMS      Range up to 260 
days 
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CHAPTER 3. RESULTS AND DISCUSSION  
  
Due to the cost factors, unique to different types of construction projects, a separate top-down 
estimation equation was developed for each of the leading agency work types.  The three work 
types identified for this purpose included resurfacing (which was further grouped under two 
categories as seal and cover, and rehabilitation projects due the considerable difference in their 
average project sizes), new construction and bridge replacement projects.  Table 3 presents a 
summary of the projects included in fitting regression equations for the top-down estimation of 
construction costs.   
  

Table 3. Summary of project types included in derivation of top-down cost estimating  
Work Type  No. 

 
of 
projects  

Low  
range ($)  

High range 
($)  Average 

project size 
($)  

Standard 
deviation  

Resurfacing  
Seal and cover  

  
81  

  
66,000  

  
1,400,000  

  
455,000  

  
328,000  

Rehabilitation  97  529,000  5,000,000  1,904,000  911,000  
Reconstruction  89  2,140,000  12,750,000  6,720,000  3,001,000  
Bridge replacements  38  336,000  2,481,000  1,071,000  632,000  

Rehabilitation Work Types: Seal and Cover; Work Type 183  
Rehabilitation Work Types: (Minor rehab, thin lift resurfacing; Work Types 180, 181, 160)  
  
Together, these three groups of projects account for more than 82% of the agency’s construction 
program (included work types shown in bold font in Table 4) based on the 996 projects awarded 
between 2006 and 2015, with over $2.2 billion construction costs.    
    
Table 4. Relative share of project work types (based on MDT project data 2006-2015)  

Work Type   Average 
project size   

 Total project 
volume   

Share  of  
total  

140 - RECONSTRUCTION - WITHOUT ADDED CAPACITY  4,798,059  532,584,588  23.7%  
130 - RECONSTRUCTION - WITH ADDED CAPACITY  7,845,479  321,664,649  14.3%  
180 - RESURFACING-ASPHALT (THIN LIFT<=60.OOMM)  2,156,764  297,633,386  13.3%  
151 - MAJOR REHABILITATION-WITHOUT ADDED CAPACITY  7,058,970  162,356,317  7.2%  
221 - BRIDGE REPLACEMENT WITH NO ADDED CAPACITY  2,622,763  141,629,190  6.3%  
160 - MINOR REHABILITATION  2,441,174  117,176,370  5.2%  
181 - RESURFACING-ASPHALT (THIN LIFT<=60.00MM)  1,790,586  105,644,568  4.7%  
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183 - RESURFACING - SEAL and COVER  575,975  89,852,039  4.0%  
310 - ROADWAY and ROADSIDE SAFETY IMPROVEMENTS  585,887  84,953,677  3.8%  
110 - NEW CONSTRUCTION  6,002,891  84,040,473  3.7%  
170 - RESTORATION and REHAB - PCCP  3,677,677  58,842,839  2.6%  
232 - MINOR BRIDGE REHABILITATION  2,094,922  46,088,275  2.1%  
231 - MAJOR BRIDGE REHABILITATION NO ADDED CAP.  2,486,638  34,812,928  1.6%  
220 - BRIDGE REPLACEMENT WITH ADDED CAPACITY  3,018,530  30,185,304  1.3%  
111 - NEW CONSTRUCTION - FACILITIES  3,930,298  27,512,088  1.2%  
150 - MAJOR REHABILITATION-WITH ADDED CAPACITY  3,317,361  19,904,165  0.9%  
710 - CTEP PEDESTRIAN AND BICYCLE FACILITIES  3,708,217  14,832,866  0.7%  
141 - RECONSTRUCTION - REMOVE and REPLACE CULVERTS  1,749,727  13,997,818  0.6%  
410 - TRAFFIC SIGNALS and LIGHTING  273,403  13,396,736  0.6%  
620 - BICYCLE and PEDESTRIAN FACILITIES  628,052  8,164,676  0.4%  
120 - RELOCATION  4,044,517  8,089,034  0.4%  
172 - RESTORATION and REHAB - FACILITIES  878,199  7,025,589  0.3%  
650 - MISCELLANEOUS STUDY PROGRAMS  2,277,560  4,555,120  0.2%  
411 - SIGNING, PAVEMENT MARKINGS, CHEVRONS, ETC.  225,093  4,051,682  0.2%  
510 - ENVIRONMENTAL  313,510  3,135,104  0.1%  
222 - BRIDGE REPL. WITH A CULVERT NO ADDED CAPACITY  970,093  2,910,280  0.1%  
185 - RESURFACING - CRACK SEALING  567,664  2,838,320  0.1%  
312 - STRUCTURE SAFETY  937,726  2,813,179  0.1%  
311 - RAILROAD/HIGHWAY CROSSING SAFETY IMPR.  432,556  1,297,668  0.1%  
313 - PEDESTRIAN and BICYCLE SAFETY  935,935  935,935  0.0%  
182 - RESURFACING - PCCP  477,597  477,597  0.0%  
412 - MISC. ELECTRONIC MONITORING OR INFO. SERV.  157,084  314,168  0.0%  
GRAND TOTAL  2,236,636  2,243,716,629  100.0%  

  
Upon identification of the project work types, several linear regression equations were tested to 
achieve the best model fit to the agency project construction cost data.  The final model 
specifications are shown in Table 5. In finalizing model specifications, variables were included 
first based on theoretical justification, and various combinations of project attributes were 
examined through stepwise regression to improve model fit and the normality of residuals.  Due 
to the emphasis placed on the potential explanatory power of top-down project attributes in the 
early stages of cost estimation efforts, the proposed model variables were chosen only if they were 
believed to be readily available to the agency personnel at the project’s inception. Hence, with 
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each additional variable added to the estimation equation, any improvements in the resulting 
Rsquared and mean absolute percent error (MAPE) values was weighed against increasing the 
complexity of the model specification.  
  

Table 5. Summary of model specifications used for top-down estimation of construction costs  

Project attributes  Seal and Cover   Rehabilitation   Reconstruction  
Bridge  
Replacement  

Area  X  X  X  
  

Length  X  X  X  X  
Width  X  X  X  X  
Highway functional classification  X        
Urban Area  X  X  X  X  
Geographical complexity  X  X      
Added capacity      X    
No of bridges    X      
Expected contract time    X  X    
Indian reservation        X  
Resurfacing variables  

Milling volume  
  

  

  
X  

  

  

  

  
Overlay volume    X      
PFR Milling scope    X      
PFR Overlay Scope    X      

Bridge types  
Concrete  

  
  

  
  

  
  

  
X  

Pre-stressed concrete        X  
Steel     X  

  
MDT’s preliminary field review (PFR) reports have been the primary source of top-down project 
attributes used to generate construction cost estimates.  Although most of the project attributes 
used as prediction variables were also available on MDT’s project management data files, and can 
be readily used to predict construction costs for future projects, some additional variables, such as 
milling and overlay scope parameters were not, are thus recommended to be tracked for ongoing 
model implementation and refinement.  Other such variables included the design type for bridge 
replacement projects, which were captured from a reconciliation of the MDT’s National Bridge 
Inventory database with the bridge replacement projects included in the analysis.  
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As expected, almost all models include some key project attributes, such as roadway surface area, 
length, width, and urban area indicator.  Yet several other key attributes, such as geographical 
complexity, were included when their presence improved the models’ prediction performance.  In 
addition, some project attributes, such as resurfacing scope parameters and bridge design types, 
were included only in their respective work type estimation equations.   
Table 6 and Figure 7 provide a comparison of the prediction accuracy of multiple regression, neural 
network and MDT preliminary construction cost estimates for the broad work type groups 
mentioned above.  The best multiple regression model fit, as indicated by the R-squared value of 
0.86, was achieved for seal and cover work type projects.  Not only did these projects tend to be 
small in size (with average construction costs of $455,000), their limited scope of work activities 
arguably lead to higher levels of accuracy when measured in mean absolute errors.  Despite the 
relative success of fitting cover and seal projects, however, the proposed multiple regression and 
neural network estimation methods fall short of providing meaningful improvements over the 
agency’s early construction cost estimates for pavement preservation project in general.  As 
mentioned earlier, the relatively lower levels of uncertainty inherent in pavement preservation 
projects, also seem to help MDT to reach its highest levels of estimating accuracy for this work 
type.  
On the other hand, for the remaining two leading work types, the two proposed prediction 
methodologies do provide considerable improvements over the agency estimates.   For example, 
the regression-based prediction model results in a 22% MAPE level, compared to the agency’s 
30% MAPE value (Table 6) for the 89 projects included under the reconstruction work type.  
Further, an even higher reduction in MDT’s average prediction error for early cost estimates for 
bridge replacement projects was achieved.  The regression and neural network methods achieved 
30% and 25% MAPE values respectively, whereas the MDT prediction accuracy for these types 
of projects was significantly higher at 43%.  
Since these two groups of work types together make up approximately 50% of the MDT 
construction volume, the implications of the suggested enhancements in MDT’s prediction 
accuracy for its early construction estimates could lead to sizeable improvements in its budgeting 
efforts.    

Table 6. Summary of model specifications and prediction accuracy for the top-down estimating 
of construction costs for leading project types  

 
Work Type  No.  of  Average  R  PFR  Regression  Neural  
 projects  Squared  MAPE  MAPE  Network  

construction  
MAPE cost 

($)  
 

Rehabilitation  81  455,000  0.86  0.21  0.21  0.20  
Rehabilitation  97  1,904,000  0.63  0.21  0.25  0.23  
Reconstruction  89  6,720,000  0.74  0.33  0.22  0.22  
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Bridge Replacements  38  1,071,000  0.73  0.43  0.30  0.25  

 
Figure 7. Prediction accuracy of multiple regression, neural network cost estimating methods, 
and MDT estimates (PFR)  
  
As a result of the analysis discussed above, Figures 8, 9, and 10 show flow charts that describe the 
process to compare current agency cost estimating accuracy to proposed multiple regression and 
neural network cost estimation models. The output of the analysis will determine whether the 
proposed statistical models improve estimating accuracy over the current system. It will also 
furnish a quantitative measure of the amount of improvement for each separate dataset. The 
findings of the top-down cost estimation analysis presented here are also made available in an 
Excel spreadsheet format to enable MDT to estimate construction costs during its project funding 
stages.  Each of the furnished spreadsheets, customized based on the unique estimation equations 
for different project work types, is a self-contained file that includes a user’s manual/instructions, 
project data driving the regression estimations, and a methodology to measure the accuracy of 
model estimates in the form of mean absolute percentage errors.  
    
  
  

  

% 21 21 % 

33 % 

43 % 

21 % 
% 25 

22 % 
30 % 

20 % 23 % % 22 25 % 

Rehabilitation (Seal & Cover) Rehabilitation (Minor rehab, 
resurfacing) 

Reconstruction Bridge Replacements 

PFR MAPE Regression MAPE Neural Network MAPE 
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Figure 8. Proposed cost prediction process for top-down estimation of 

MDT construction costs  
  
  
  
  

Update regression data  
  
  

Specify regression model  
  

  Run regression  
  

  Update model coefficients  
  

Figure 9. Proposed update process for cost prediction model  
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Figure 10. Proposed process for comparison of agency cost estimating accuracy to 

proposed multiple regression and neural network cost estimation models  
The details of the results of statistical analyses shown in Figure 10 are found in Appendix A. The 
interpretations of the research results are discussed in detail in three peer-reviewed journal articles. 
Rather than repeat them in the body of this report, they are contained in the Appendices D, E, and 
F to the report for the convenience of the reader. The next section summarizes the highlights of 
each paper in terms of each papers’ major conclusions and contributions.  

Additional Research Findings  
In addition to the developed estimating models and research findings for this project, the research 
team has utilized data from this project to further extend the highway cost estimating body-
ofknowledge. Three research papers have been completed for submission to academic construction 
journals and are summarized below. The implications of their findings to the MDT project have 
been detailed.  

Paper 1 Summary: “Quantifying Efforts in Data-Driven Conceptual Cost Estimating Models for  
Highway Projects”  
This paper, included in Appendix D, investigated how to establish the fewest number of input 
variables required at the conceptual cost estimating stage to develop a suitable estimate. Typically, 
it is perceived that more project detail enhances cost estimating accuracy, however this paper 
challenged that theory by investigating the minimum number of variables that needed be included.   
A rational method was proposed and then validated to select the most suitable input variables for 
MDT. This involved the Cost Estimating survey conducted at MDT to identify those input 
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variables which have the largest influence on the construction cost but require the least amount of 
knowledge to identify at the conceptual stage. The paper found that after around 6-8 input 
variables, then additional input variables no longer enhanced the estimate accuracy. As a result, it 
is suggested that MDT prioritize collecting these highly influential variables in the ‘global 
database’ which is to be used by the cost estimating model.    

Paper 2 Summary: “Stochastic Conceptual Cost Estimating of Highway Projects to Communicate  
Uncertainty using Bootstrap Sampling”  
This paper, included in Appendix E, investigated how artificial neural networks developed for 
estimating a construction cost could be extended to produce a stochastic cost (as opposed to a point 
estimate). This research paper recognized that not all cost estimates at the initial stage are known 
to the same degree of confidence. For example, MDT will generally be very confident on the cost 
of a chip-seal project compared to a highway reconstruction due to the level of unknowns at the 
early stages. This research therefore attempted to investigate if the artificial neural network could 
better communicate the conceptual cost estimate through a range of construction costs.   
This paper realized substantial benefits for MDT to express the cost estimate as a range of costs at 
the initial stage (as opposed to a single number). The confidence intervals produced as part of this 
research could be used to communicate the level of certainty to transportation committees or the 
public. Alternatively, the range of cost estimates developed could aid a highway agency to 
rationally assign contingency at the conceptual stage to individual projects.   

Paper 3 Summary: “Rationally selecting data for Highway Construction Cost Estimating at the 
Conceptual Stage”  
This paper, included in Appendix F, investigates the sizes of databases used by previous authors 
of conceptual cost estimating models. It challenges practical application of those publications 
achieving such high performance but using so few projects in their database to power their model. 
The most relevant finding of this paper to the MDT project is that larger databases powering an 
estimate model only increase the accuracy and reliability of an estimating model. This is in-line 
with other literature findings.   

    
CHAPTER 4. CONCLUSIONS AND RECOMMENDATIONS FOR  

FURTHER RESEARCH  
  
Early cost estimating methodologies provided in this report build on an important finding also 
developed through the course of this work, which is described in detail in Research Paper 1. While 
the desirability of more data to improve estimating accuracy is accepted as a truism, this study 
demonstrates that not all project attributes have similar information content.  In fact, a handful of 
variables can reach accuracy levels that cannot be necessarily improved with the addition of further 
variables.   
The outcomes of this research study thus suggest a top-down estimating approach can help achieve 
considerable efficiencies in improving MDT’s budgeting and project funding processes.  The study 
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investigates the applicability of multiple regression and neural network estimation approaches, in 
particular, and finds that their employment in the early estimation of agency construction costs can 
increase the accuracy of agency estimates.    
The findings confirm the importance of project work types in the accuracy of early cost estimates. 
New construction and bridge replacement projects are found to have relatively higher potential to 
gain from further process improvements. Even when the accuracy of the proposed methodologies 
seem to be limited for some work types, it should be noted that the inclusion of these methods into 
agency practices can still be desirable given the relative ease of generating early estimates.  As 
with any estimation model that relies on historical cost data, however, the performance of the 
estimation equation depends on the relevance and accuracy of the data used to predict model 
coefficients.  It is therefore important to regularly monitor and calibrate model specification and 
functional form provided in the estimating spreadsheet.   

The main findings of the three research papers written under the study are summarized as follows:  
  

Research Paper 1  
This paper, included in Appendix D, shows that a carefully constructed input selection method 
may achieve optimal model specification by eliminating the often ad hoc stepwise regression 
practices common in early estimation practices. Such a methodology indeed promises considerable 
efficiencies to agency budgeting processes due to the simplicity and relative availability of project 
attributes during a project’s inception stages.   
Multiple regression and neural network estimation models both reached the goal with the 
dualobjectives of low effort and high accuracy, suggesting that top-down estimating practices are 
capable of matching or exceeding accuracy levels that are typically reached with considerably 
more input intensive estimation equations. In the case of conceptual estimation of MDT 
construction costs, both the multiple regression and artificial neural network approaches showed 
that incremental data variables detail to the model reached a point of diminishing returns at roughly 
six to eight high impact/low effort variables.  
In fact, adding further input variables using either model technique resulted in diminishing returns 
of the model performance. This finding has positive implications for practitioners willing to 
employ data-driven conceptual cost estimating techniques.   
  

Research Paper 2  
As the second research paper, Appendix E, emphasizes, point estimates are single numbers with 
no indication of the level of confidence with which they have been developed. In later estimating 
stages, when quantities are known, highway agencies can be more confident and can express the 
estimate in that form.   
However, for the earlier estimate stages, where project scope is less developed, the estimate should 
be expressed in a manner that describes the estimator’s confidence; providing a range does just 
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that. The communication of estimate confidence through a range could help remove optimism and 
bias inherent with conceptual cost estimates.   
Additionally, the power of developing an empirical distribution for individual projects highlights 
a method that highway agencies can use to assign contingency. The findings of this research found 
that not all projects have the same level of confidence, as such individual contingencies require a 
rational basis for their amount rather than a fixed percentage of construction costs.   
  

Research Paper 3  
Despite the widely held belief that more data increases the accuracy and reliability of data-driven 
CCE models, a content analysis of 20 data-driven construction cost estimating models revealed 
that some models had a very low prediction error despite using few projects to train the model 
(Appendix F).   
To help improve the accuracy of construction cost estimating methods, this paper suggests a 
rational method to effectively represent a database without using all data points. An illustrative 
example using artificial neural networks was provided to demonstrate how only a subset of project 
data could reasonably improve model prediction accuracy as long as key attributes were captured 
in the sample data.   
The vast improvement in computing technologies over the past 30 years, including artificial neural 
network estimation techniques, holds considerable potential in improving the performance of 
construction cost estimating practices.  The DOTs, in particular, could benefit from computational 
advances in their budgeting efforts.   
  

Recommendations for further research  
Cost estimating equations in this report were developed through the consolidation of high-level 
project information that is available during the project inception phase with the projects’ final 
construction costs based on their contract award information. Due to the constantly evolving nature 
of project scopes during the project development stage, the ease of updates to early cost estimates 
as scope changes occur will be critical for the efficient implementation of the proposed 
methodologies.  As such, the integration and timely update of early project information on MDT 
project management systems is a logical next step in further improving the initial model 
specifications provided here.  Further, tailoring MDT project management systems with an 
emphasis on capturing project information essential to the accuracy of early estimating practices 
is expected to increase the confidence levels of agency’s budgeting efforts notably.  Finally, 
identifying those projects that experienced considerable variances from funding to the award stage 
and the analysis of such unexpected deviations from baseline budgets will ensure the calibration 
of the estimation equations as MDT’s dynamic planning needs continue to evolve.    
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APPENDIX A. EXTRACTING PFR REPORTS AND REGRESSION AND  
NEURAL NETWORK RESULT COMPARISON   Extracting PFR reports  

This appendix is a summary of method used to extract the PFR reports that were used to create the 
‘global database’  

>> Log-in to DMS: MDT intranet >Resources>Web-applications>Document Management 
System (DMS) located under the Highways and Engineering section.  >> Go to home (top-left 
button)  
>> Type %PFR% into document.   
>> Highlight class, workgroup and type in the blank area  

  
… then it will take a-while to find as searching for all PFR’s  

>>  Click      
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>> On the ones that you want click view (can do many views at once).   

>> Then click  (in the middle bottom)  
 >>  DMS  Processes  to  find  all  the  documents  you  have  clicked  view  on  
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>> The files you view will be in >> 
Can just copy them out.   
  
  

Statistical Output of Multiple Regression Analysis   

Multiple regression output for Pavement Preservation (Seal and Cover) Work Types   
  

 
Regression Statistics  

Multiple R  0.93  

R Square  0.86  

Adjusted R Square  0.85  

Standard Error  125,802  

Observations  81  
  

    df  
 

SS  MS  F  
Significance 

F  
Regression  6  7.41E+12  1.24E+12  78.08  0.000  

Residual  74  1.17E+12  1.58E+10      
Total  80  8.59E+12            

  

   Coefficients  
Standard 

Error  t Stat  P-value  
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Intercept  108,644  85,320  1.27  0.21  

Area  0.20  0.06  3.43  0.00  

Width  -2,102  2,218  -0.95  0.35  

Length  297  11,146  0.03  0.98  

Hwy functional class.  46,627  26,649  1.75  0.08  

Geographical complex.  78,023  44,806  1.74  0.09  

Urban area  21,260  42,815  0.50  0.62  
  
  
  
    
Multiple regression output for Pavement Preservation (Rehabilitation) Work Types  Regression 
Statistics  

 
Multiple R                       0.79   

R Square                       0.63   

Adjusted R  
Square                       0.57   
Standard Error                 595,407   

Observations                           97   
  

    df    SS    MS    F   

  
Significance  

F   

Regression  

              
12   5.00E+13  4.16E+12  

        
11.75   

                  
0.000  

Residual  84   2.98E+13  3.55E+11      
Total  96   7.98E+13           

  

   
  

Coefficients   
 Standard  
 Error     t Stat   

 
Pvalue   

Intercept  -1,774,122  521,349  -3.40  0.00  
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Area  -0.18  0.40  -0.46  0.65  

No. of bridges  36,062  22,356  1.61  0.11  

Width  24,853  9,344  2.66  0.01  

Length  211,304  45,654  4.63  0.00  

Hwy functional class.  245,378  100,640  2.44  0.02  

Geographical 
complex.  23,380  103,893  0.23  0.82  
Urban area  -465,181  215,998  -2.15  0.03  

Exp. contract time  9,308  2,766  3.37  0.00  

PFR: Milling  -458,937  256,998  -1.79  0.08  

PFR: Overlay  1,536,393  283,527  5.42  0.00  

Milling volume  1.27  0.96  1.32  0.19  

Overlay volume   -2.50  1.45  -1.72  0.09  
  

Multiple regression output for New Construction Work Types  Regression Statistics  
Multiple R  0.86  

R Square  0.74  
Adjusted R Square  0.72  

Standard Error  1,602,916  
Observations  89  
  

   df  
 

SS  MS  F  Significance F  
Regression   6  5.86E+14  9.77E+13  38.01336  0.000  

Residual   82  2.107E+14  2.57E+12      
Total   88  7.967E+14           

  

   Coefficients  
Standard 

Error  t Stat  P-value  
Intercept  -808,955  979,192  -0.83  0.41  
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Area  3.09  1.36  2.27  0.03  

Length  -100,172  196,739  -0.51  0.61  

Width  -15,271  23,782  -0.64  0.52  

Exp. contract time  39,241  4,094  9.59  0.00  

Urban area  196,097  473,943  0.41  0.68  

Added capacity  1,127,040  424,866  2.65  0.01  
  
    
Multiple regression output for Bridge Replacement Work Type Regression Statistics  
Multiple R  0.85  

R Square  0.73  
Adjusted  R  
Square  0.66  
Standard Error  366,464  

Observations  38  
  

    df  
 

SS  MS  F  
Significance 

F  
Regression  7  1.074E+13  1.53E+12  11.42134  0.000  

Residual  30  4.029E+12  1.34E+11  
   
 

Total  37  1.477E+13            
  

   Coefficients  
Standard 

Error  t Stat  P-value  
Intercept  -622,604  403,809  -1.54  0.13  

Width  51,601  11,273  4.58  0.00  

Length   5,177  760  6.81  0.00  

Concrete  -437,182  318,033  -1.37  0.18  

Pre-stressed conc.   -650,399  290,474  -2.24  0.03  

Steel  -474,285  340,202  -1.39  0.17  

Urban area  204,121  276,859  0.74  0.47  
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Indian reservation  679,729  191,413  3.55  0.00  
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APPENDIX B. COMPLEXITY RATING CHART  
Terrain/Topography  Flat  

Generally flat, fairly flat 
etc.  

Rolling  
Flat and rolling or gently rolling  

Mountainous  
Gorges, steep terrain etc.  

        
  Low  Medium  High  
Geotechnical 
Involvement  

No digouts or other 
geotech  

Roadway projects will require minor digouts 
Additional spot mill/fill in projects not receiving 
any mill (<3 intersections or bridge approaches or 
thick bridge mill in chipseal or overlay project)  

Extensive sections of roadway digouts 
>3 spot mill/fill over and above the 
mainline works   
Relevel bridge approach slabs  
Multiple of the medium type works  

Traffic signs and 
pavement markings  

Standard 
pavementmarking 
replacement only 
(required on all projects)  
  
Or “traffic to assess 
reflectivity and upgrades 
required”  

Standard pavement-marking replacement with any 
of the following two:  

- Replace or upgrade signs  
- Changes to pavement markings 

required/TWTL markings/lane changes  
- Significant pavement marking upgrades in 

urban area  
- Some sections of rumble-strip  
- Minor and singular safety sign: Weigh-

InMotion advance sign etc., intersection 
advance signs  

Or none of the above but rumble strips on the entire 
project.   

As with medium rating plus any:  
- Flashing signs or traffic lights  
- Overhead signs  
- Lighting  
- Substantial upgrades to 

rumble-strips and any of the 
other medium works  

Railroad  
Involvement  

Low likelihood of 
requiring agreement 
>50ft from railroad  

Possibly flagmen at times  
Project areas within 50ft of railroad and railway 
insurance required  
  

Flagmen at times  
MRL agreement  
R/W acquisition and/or utility 
involvement with railroad  

      Page | 32   
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Utility Complexity  No utility involvement  Medium rating for any of the geotechnical, 
ADA/sidewalk or guardrail to reflect the possible 
utility identification or relocation  
No major utility relocations  
And/or Mill/Fill in urban area requiring ironwork 
to be raised and protected  

High rating for any of geotechnical, 
ADA/sidewalk or guardrail  or  
Significant utility disturbance is known  

Environmental issues  Categorical Exclusion 
Minimum interaction with 
environmental and 
permitting agencies Minor 
environmental impacts  
Do not involve cultural 
resources, hazardous 
waste, Section 4(f) 
evaluations or substantial 
flood plain encroachments  

Categorical Exclusion or Environmental  
Assessment  
Cultural Resources (historical, archaeological etc.), 
SHPO  
Wetland mitigation, 124 notification, 404 permit 
required  
Parkland involvement, hazardous waste, floodplain 
encroachments  
Water and air pollution mitigation  
Major coordination with Game or Fish and Boat 
commissions Endangered species  
Migratory Birds  
Cores required to test if AC is contaminated with 
asbestos  

Environment Impact Study or complex  
Environmental Assessment required  
Studies of multiple alternatives 
Continued public and elected officials 
involvement in analyzing and selecting 
alternates  
Other agencies (such as FHWA, COE, 
EPA, Fish, Wildlife and Parks, DEQ, 
etc.) are heavily involved to protect air; 
water; game; fish, threatened and 
endangered species; cultural resources 
(historical, archaeological, parks, 
wetlands, etc.) etc.  
Tribal involvement with resources  

Guardrail (on bridge 
or highway)  

No guardrail work  Either:  
- 1 rail upgrade or a few (1-3) bridges 

requiring end terminus upgrades  
- Awaiting recommendations from safety  
- Guardrail extensions on 1-bridge  
- Guardrail repairs  
- Minor guardrail replacement  

Significant upgrades possibly 
involving:  

- >3 end terminus on guardrails  
- Guardrail extensions  
- Concrete bridge rails  
- Raising heights on >1 bridges 

or other guardrails  
- Entirely new guardrail  

installation  
- >1 rail upgrades  

ADA and sidewalk  None  1 ADA intersection upgrade and/or minor 
sidewalk involvement or traffic furniture 
Detectable warning signs being added  

More than 1 ADA upgrade and/or 
extensive sidewalk upgrades  
Curbing or traffic furniture upgrades.   
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APPENDIX C. SURVEY AND RESULTS  
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Key to analyze the survey results:  
Question 1) When do you typically compute or identify this variable in the preconstruction 
stages?  

  
Answer:  

Nomination  PFR  A and G  SOW  PIH  Final 
Plans  

Scale:  1  2  3  4  6  7  
  

Question 2) Rate the typical effort required to compute or identify each variable:  

Rating:  L = Low effort, 
information available, 
desktop study  

M = Medium time and  
effort  

H = High effort involved. 
Possibly site visits, site 
investigations and 
approximations.  

Scale:  1  2  3  
  

Question 3) If required, what is the first stage that you could roughly compute or identify this 
variable?  

  
Answer:  

Nomination  PFR  A and G  SOW  PIH  Final 
Plans  

Scale:  1  2  3  4  6  7  
  

Question 4) Rate the additional effort required to identify or compute this cost influencer at 
an earlier stage  
Rating:  L = Little extra effort  M = Average additional 

effort and time  
H = Lots of extra effort 
and time  

Scale:  1  2  3  
  

Question 5) How influential do you believe this variable is on construction cost:  

  
Answer:  

Does not 
influence cost  

Minor 
influence  

Average 
influence  

Major influence  

Scale:  1  2  3  4  
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Results using the key from above:  

   1) When do you typically compute or identify this variable in the 5 / preconstruction stages? 

Response ID Role Location 

 

 

 

  

 
  

 
  

 

 

 
 

 

 
 

 

 

 

 
 

 

    

 

R_1eFy4CJrrMm3JqK   1 1 2 2 2 1 2 2 2 1 2 2 3 3 3 3 4 3 5 4 5 4 4 4 5 5 6 6 6 

R_1DU5jJgtUbYMokT Civil Engineering Specialist Road Design 1 1 3 2 2 2 2 2 2 2 4 2 3 4 3 3 2 3 4 3 5 5 5 5 4 4 5 6 6 
R_dg4ugYvLdQLZljb   2 2 2 2 2 2 3 2 2 2 2 2 3 3 3 3 3 3 3 5 5 4 3 4 3 4 5 5 6 

R_1jfhj5wFrHvsyfF Design Superviser Highways/Road Design 2 2 4 2 2 2 3 4 2 2 2 4 3 4 3 3 4 3 4 4 4 4 4 5 4 4 5 5 6 
R_1n1qlsafURopcxX Project Design Manager - Butte District, Helena R oHighways Bureau/Engineering Division 1 1 2 3 2 2 2 2 1 1 2 1 3 4 3 4 4 3 4 3 5 3 4 5 3 3 6 6 6 
R_3fDBxpI87M2jdqE   1 1 2 1 1 1 3 2 2 2 4 2 3 4 4 4 2 4 4 3 4 5 4 4 3 3 5 5 5 

R_2zIazKl1jtMkHLI Highways Engineer Engineering/ Highways Bureau 1 1 2 1 1 1 2 2 2 1 3 3 2 4 3 2 4 3 3 1 3 2 4 4 5 5 5 3 5 
R_2WIT1OSEFtocCBd District Projects Engineer Billings 1 1 4 2 2 1 1 1 1 1 4 1 3 4 4 4 4 5 4 5 4 4 4 4 4 5 5 5 5 
R_bEfPyQKuDzHbbCZ   1 1 2 3 3 2 2 2 2 3 3 1 3 3 3 3 4 4 4 5 5 5 5 5 6 6 5 4 4 

R_2YgHJsn5MvjQLY0 Road Design Supervisor Highways 1 1 3 3 2 2 3 2 2 2 3 6 3 5 3 4 4 6 4 5 5 5 3 3 5 5 6 6 6 
R_1g53A4uQG6YNjEd Project Design Manager Road Design 1 1 2 2 2 2 2 2 2 3 5 2 3 4 4 5 6 5 5 5 5 4 4 4 5 6 5 5 6 
R_2zzHL8ADHeSyOQa Design Supervisor Missoula District 1 1 2 2 2 2 1 1 4 2 5 2 3 3 5 3 2 5 5 2 6 2 5 5 3 5 5 5 5 
R_3Mlo4lu2WdLyI7x CE Specialist IV Highways Preconstruction 2 2 2 2 2 2 2 3 2 2 3 2 3 3 3 3 2 3 4 2 4 3 3 3 2 3 5 5 5 
R_2wboZURMDofjOSB Project Design Manager - GF District - Hlna Road Design 1 1 3 2 2 2 1 2 2 2 2 1 3 5 3 5 4 5 4 4 5 5 5 5 5 5 6 6 6 
R_YXicvrJ6nfdaSJz   2 2 2 2 2 2 3 2 2 4 4 3 3 3 3 3 4 3 4 3 5 5 3 3 4 4 6 5 6 

R_Umyt4KDgJsM7Bpn District Projects Engineer Engineering 1 1 4 2 2 2 2 4 2 2 5 5 3 4 3 3 4 3 4 5 5 4 4 4 4 4 5 5 6 
R_yEnCBh1sWKRS1MZ Projects Engineer Great Falls 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 4 4 4 6 6 5 
R_8B8kZEX8gknB4Pf District Design Supervisor Road Design 1 1 3 2 2 2 3 2 2 2 3 2 3 4 3 3 4 3 4 4 5 4 5 4 4 5 6 6 6 
R_2tmqPgcYyXVtDBP Project Design Engineer Highways Bureau/Engineering 1 1 2 2 2 2 2 2 2 2 2 1 3 3 3 2 4 3 4 4 4 5 4 4 4 4 6 6 6 
R_2uqQcZdnhzKODL0 Area Engineer Bridge 1 1 4 2 2 2 3 3 3 2 5 1 3 4 3 2 3 3 5 3 3 4 4 4 3 5 5 6 6 
R_2Eyt8bbkBpvebRB District Preconstruction Engineer Glendive District 1 1 2 2 2 2 1 2 2 2 4 2 3 2 3 2 4 3 3 4 5 5 3 3 5 5 5 5 5 
R_1176Ah6vPzzTrWN CE Spec IV Highways/Preconstruction 2 1 2 4 2 2 3 2 1 2 4 1 3 5 2 4 1 5 3 5 5 2 3 3 2 5 5 5 6 
R_2y3qTjT7q0ZCuRz Bridge Area Engineer Bridge/Engineering 1 1 2 3 3 2 3 3 2 1 5 2 3 3 3 3 4 3 4 1 2 2 4 4 4 4 5 5 4 
R_8cCTmXt4zzGbHkF Project  Engineer Consultant Design 1 1 2 3 2 2 1 3 2 2 5 2 3 5 3 3 3 5 3 3 4 4 5 5 3 5 6 5 6 
R_3JmUpphTAMkMyOR Missoula Dist Preconstruction Engineer Missoula 1 1 5 2 2 2 2 3 2 1 4 4 3 4 3 2 3 3 4 3 4 4 4 4 4 4 1 1 6 
R_2WGoJ6hIpTNOOWj Project Fatilitation Specialist Consultant Design 1 1 2 2 2 3 1 3 1 1 2 3 3 2 2 3 2 3 3 5 5 5 4 3 5 4  5 5 

R_2wuClEWuMtVdyWD Civil Engineer Highways/Engineering 1 1 3 2 2 2 2 2 2 2 4 4 2 2 2 2 4 5 3 4 5 5 4 4 4 4 6 6 6 
R_3KZzoTOR0GNcRrd Project Design Engineer Highways Bureau - Road Design 1 2 2 2 2 2 4 2 2 2 2 3 3 4 3 2 3 5 5 3 2 2 5 5 3 6 6 5 6 
R_SI96EpxiXBc69Xz   2 2 2 2 3 2 3 3 2 2 3 3 3 4 3 3 3 5 5 3 5 4 4  3 5 5 5 6 

R_24rqj7qqRRlMP4d Butte DESS Butte District 1 1 3 2 2 2 1 2 3 2 4 1 3 4 4 2 5 3 4 1 5 5 5 5 5 5 6 6 5 
R_2diqSgVAgZaKy3u District Projects Engineer Missoula 1 1 2 2 2 2 1 2 2 1 3 2 3 3 3 2 3 3 3 3 2 2 3 3 4 4 3 4 5 

 
2) Rate the typical effort required to compute or identify each / variable 3) If required, what is the first stage that you could roughly compute or identify this variable? 
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1 1 1 2 1 1 2 3 2 2 3 1 2 3 2 2 3 2 2 2 2 1 2 2 3 3 3 3 2 1 1 3 2 2 1 2 2 3 1 3 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 6 6 4 
1 1 2 1 2 1 2 2 1 2 2 1 3 1 2 2 2 3 2 2 1 2 3 2 2 3 2 2 1 1 1 1 2 1 1 2 2 2 2 3 2 3 3 2 3 3 4 4 4 4 3 4 4 3 4 5 6 4 
3 3 3 1 1 1 2 1 1 2 2 1 2 2 2 2 2 2 2 1 1 1 2 2 1 2 3 3 1 1 2 2 2 2 2 3 2 2 2 3 2 3 3 3 3 3 3 4 3 5 5 3 3 3 4 5 5 6 
1 1 3 1 2 2 2 1 1 1 1 1 3 3 1 3 1 3 2 1 3 2 2 2 1 1 3 3 2 1 1 3 1 1 2 3 2 1 2 2 2 2 2 2 3 2 3 4 2 3 2 3 3 2 3 3 3 4 
1 1 2 2 1 1 2 2 1 3 2 1 3 3 3 2 3 2 3 2 2 2 3 3 2 3 3 3 1 1 1 2 1 1 1 2 1 1 1 3 1 3 3 3 4 3 3 3 1 2 2 3 3 3 3 4 4 4 
1 1 2 1 1 1 2 1 1 3 2 1 2 2 2 2 2 2 3 2 3 3 2 2 3 3 3 3 2 1 1 3 1 1 1 2 2 1 3 4 1 2 3 3 4 3 3 3 3 3 4 3 3 3 3 4 4 3 
1 1 1 2 1 1 1 1 2 1 3 1 3 2 2 1 2 3 3 1 1 2 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 3 2 1 3 2 3 1 2 1 3 3 3 4 3 2 3 
1 1 1 1 1 1 1 2 1 1 2 1 3 3 2 3 2 3 2 2 2 2 2 2 2 2 3 3 2 1 1 2 2 2 1 2 2 2 2 4 2 3 4 4 4 4 5 4 4 4 4 4 4 4 4 5 5 5 
1 1 2 1 1 1 2 2 2 2 2 2 3 3 2 2 2 3 3 2 2 3 3 2 3 3 2 2 2 1 1 3 2 2 2 1 3 2 2 3 4 3 3 3 3 3 3 3 4 3 5 5 4 6 6 5 5 5 
1 1 2 1 1 1 2 2 1 1 1 1 3 2 2 3 2 3 2 1 2 3 3 3 2 2 3 3 2 1 1 2 2 2 1 2 2 2 2 2 5 5 5 3 5 4 5 5 4 4 5 5 5 5 5 5 6 6 
1 1 1 1 1 2 2 1 1 1 2 2 3 3 2 2 2 3 3 2 2 2 3 3 3 3 3 3 2 1 1 2 2 2 2 1 2 2 1 2 2 3 3 2 2  2 2 2 2 3 3 3 3 3 2 2 3 

1 1 2 1 1 1 1 1 1 2 2 1 3 3 2 2 3 3 3 2 2 2 3 2 3 3 3 3 1 1 1 2 1 1 1 1 1 1 2 4 4 3 3 3 3 4 3 4 4 4 4 4 4 4 4 5 5 4 
1 1 1 2 1 1 1 2 1 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 2 4 4 3 3 2 2 5 5 4 
1 1 2 1 1 1 1 2 1 3 2 1 3 3 2 2 2 2 3 1 2 3 3 3 2 2 3 3 1 1 1 2 1 1 1 1 1 1 1 2 1 3 4 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 
1 2 2 1 1 1 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 3 2 2 4 5 2 2 3 2 3 4 2 4 3 5 5 4 4 4 4 6 5 5 
1 1 2 2 1 1 2 3 1 2 2 2 2 3 2 2 2 2 3 2 2 3 3 3 2 2 2 2 2 1 1 3 2 1 1 1 3 1 2 3 3 3 3 3 3 4 3 4 3 4 3 4 4 4 4 5 5 5 
1 1 1 1 1 1 2 1 1 1 1 1 3 2 2 3 2 2 3 2 2 2 2 2 2 2 3 3 1 1 1 2 2 2 1 2 2 2 2 2 3 3 3 2 2 3 3 3 4 3 3 4 4 3 4 5 5 3 
1 1 1 1 1 1 2 2 1 1 2 1 2 3 2 2 3 2 2 2 1 1 2 2 3 3 3 3 1 1 1 1 1 1 1 3 2 2 2 3 2 3 3 3 3 4 3 4 4 5 3 3 3 4 5 6 6 6 
1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2 2 2 2 2 2 3 3 1 1 1 3 2 2 2 2 2 2 2 2 2 3 3 2 3 2 3 3 3 3 3 3 3 3 3 6 6 5 
1 1 2 1 1 1 2 2 1 2 2 1 3 2 2 2 2 2 3 2 1 2 3 2 2 3 2 3 1 1 1 2 2 2 2 2 2 2 2 2 2 3 2 2 2 3 3 3 3 2 3 3 3 3 3 3 3 5 
1 1 2 1 1 2 2 3 2 1 2 1 3 2 2 2 1 1 3 1 2 3 3 2 1 3 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 1 2 3 3 2 2 3 2 2 3 3 3 3 3 
1 1 2 2 2 3 3 3 2 1 1 1 3 3 3 3 1 3 3 1 3 1 2 2 1 1 3 3 2 1 1 2 2 2 1 1 2 1 1 1 1 3 3 1 1 1 3 3 2 4 2 4 4 3 3 5 5 6 
1 1 2 1 1 3 3 3 2 3 3 2 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 4 4 3 2 2 2 2 2 2 1 2 2 3 3 3 3 3 3 3 1 2 2 3 3 3 3 4 4 4 
1 1 2 1 1 1 2 3 1 1 2 2 2 3 2 2 1 2 3 1 2 1 2 2 1 2 2 2 2 1 1 2 1 1 1 2 3 1 1 4 2 3 3 3 4 3 3 3 2 4 5 5 5 4 4 5 5 5 
2 2 2 1 1 1 1 1 1 2 2 1 2 2 2 1 2 1 2 1 2 2 2 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 4 3 3 2 3 1 1 3 3 1 1 1 1 1 3 3 1 1 1 
1 1 2 2 2 3 1  1 1 1 1 3 2 2 2 2 2 3 1 2 2 3 3 3 3 3 3 2 1 1 2 2 2  1 3  1 1  3 3 3  1 3 3 3 3 2 3 4 4 3 4 4 4 

1 1 2 1 1 1 1 2 1 1 2 2 3 2 2 1 2 3 3 2 2 2 3 2 2 3 3 3 2 1 1 2 1 1 2 2 1 1 1 2 5 2 2 1 1 1 6 2 2 5 6 4 3 3 3 6 6 6 
1 1 2 2 1 1 1 2 1 1 1 1 3 3 2 2 2 2 3 1 2 1 3 3 2 3 3 3 2 1 1 2 2 2 1 1 2 1 1 1 3 2 2 2 1 2 3 3 2 2 2 2 3 3 3 6 3 3 
1 1 2 1 2 1 2 2  2  2 3  2  3 3 3 2 2 2 3  3 3 3 2 2 1 1 2 2 2 2 3 3 2 2 3 3 3 3 3 3 3 3 4 3 3 3 4 4 3 3 3 3 4 

1 1 3 2 1 1 1 1 1 2 3 2 3 3 2 2 3 3 3 1 3 3 3 3 3 3 3 3 2 1 1 3 2 2 2 1 1 1 2 2 1 3 3 3 2 4 3 4 3 4 3 4 4 4 4 5 5 5 
1 1 3 1 1 1 2 3 1 1 2 1 3 3 2 3 3 3 3 2 2 2 3 3 3 3 3 3 1 1 1 3 1 1 1 1 2 1 1 3 2 3 3 2 3 2 3 3 3 3 2 3 3 3 3 4 4 3 

 
4) Rate the additional effort required to identify or compute this cost influencer at an earlier 5) How influential do you believe this variable is on construction / cost? /   /  Note: For this questi... 
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1 1 2 1 1 1 3 3 2 3 3 1 2 3 2 2 3 2 3 3 3 2 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 4 4 4 2 4 4 3 3 4 3 3 3 3 2 3 4 4 4 4 3 1 
1 1 1 1 1 1 1 1 1 2 2 1 1 2 1 1 2 2 2 1 2 1 2 1 2 2 3 2 1 3 2 2 4 2 4 4 3 3 4 3 3 4 3 4 3 4 4 3 4 3 2 3 3 4 4 4 4 3 
1 1 1 1 1 1 2 1 2 2 2 1 2 2 2 1 2 3 3 1 2 2 2 2 2 2 2 2 1 3 3 3 2 1 2 1 2 3 3 3 2 3 3 3 3 4 4 4 3 3 3 3 3 4 4 4 3 2 
1 1 3 1 2 1 3 2 1 1 2 3 3 3 2 3 1 3 3 1 3 3 3 3 1 2 3 3 3 4 3 4 3 3 3 3 3 3 4 3 2 4 3 3 3 4 3 4 2 4 3 2 3 2 3 4 4 2 
1 1 2 1 1 1 2 2 1 2 3 1 2 3 2 3 2 3 2 2 2 2 2 2 2 3 2 2 1 4 3 3 3 4 3 4 3 4 4 2 2 3 4 4 2 3 4 4 4 3 2 3 3 3 3 4 3 2 
2 2 2 1 1 1 2 2 2 2 2 2 3 3 2 3 2 3 2 2 3 3 3 3 2 2 2 2 2 3 4 4 2 2 3 3 3 3 4 2 2 3 4 3 3 4 4 3 4 4 3 3 3 3 4 4 4 3 
1 1 2 3 1 1 2 2 3 1 2 1 3 3 2 2 3 3 3 1 2 2 3 3 3 3 3 2 3 4 3 3 3 3 4 3 2 3 3 2 3 4 3 4 3 4 4 3 4 2 2 3 3 4 3 3 2 3 
1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 1 4 3 3 2 2 2 3 2 3 3 3 2 3 3 3 3 3 4 3 3 3 2 2 2 4 3 3 3 2 
1 1 1 1 1 1 1 2 1 1 2 2 2 2 2 2 2 3 2 2 1 2 2 2 2 2 2 2 2 4 2 2 3 3 3 1 3 2  2 2 3 2 3 3 4 3 3 3 2 3 3 3 4 4 4 4 3 

1 1 2 1 1 1 2 2 1 1 1 1 2 1 2 2 1 2 2 1 2 3 3 3 3 3 3 3 2 4 2 2 3 3 4 3 1 3 2 2 4 4 3 3 3 3 4 2 3 2 3 3 3 3 3 4 3 1 
1 1 2 1 1 2 2 2 1 1 2 2 3 2 2 2 2 3 3 2 2 2 2 2 3 3 2 2 2 4 3 4 4 3 4 3 4 3 4 3 3 3 4 4 3 4 4 4 4 3 2 3 3 4 4 3 3 2 
1 1 1 1 1 1 1 1 1 1 2 1 3 3 2 2 3 3 3 2 2 2 3 2 3 3 3 3 2 4 3 4 4 4 4 4 3 2 4 2 2 4 3 4 3 4 4 4 2 3 4 2 3 4 4 3 3 3 
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 1 2 2 2 2 1 1 3 3 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 1 
1 1 2 1 1 1 1 1 1 1 1 1 3 3 1 3 2 3 3 2 2 3 3 2 2 2 3 3 1 4 3 3 4 4 4 2 3 3 3 2 4 4 2 4 2 3 4 4 3 3 3 2 2 3 4 2 4 4 
1 1 2 1 1 1 2 1 1 2 2 2 2 2 2 2 3 2 2 2 3 3 2 2 3 3 3 3 1 3 3 4 4 4 4 4 4 3 4 3 3 4 4 3 2 4 4 4 3 3 3 3 3 4 4 3 3 2 
1 1 1 1 1 1 1 2 1 2 2 1 2 2 2 2 2 2 3 2 1 2 3 2 3 3 2 2 1 4 4 3 3 3 4 3 3 2 4 3 3 3 4 3 3 3 4 3 3 3 3 3 3 4 4 3 4 3 
1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 2 1 1 1 2 2 1 3 2 2 1 4 2 2 2 3 2 4 2 2 4 3 2 4 3 4 3 2 4 3 3 2 2 3 3 2 3 4 4 2 
1 1 2 1 1 1 3 2 2 2 3 1 3 3 2 2 3 2 3 2 1 2 2 2 3 3 3 3 1 2 2 2 1 1 1 3 2 4 4 4 2 3 4 3 3 3 3 3 2 2 2 3 4 3 4 4 4 2 
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 4 4 4 3 3 4 3 3 3 4 4 3 4  4 4 4 4 3 3 4 3 4 4 4 4 3 3 2 

1 1 2 1 1 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 1 3 3 2 2 2 2 2 2 2 2 3 2 2 2 4 2 3 4 2 2 4 2 3 2 4 4 4 4 3 2 3 3 3 3 3 2 2 
1 1 2 1 1 1 1 1 1 1 2 2 3 3 2 3 2 3 2 2 2 2 2 2 2 2 2 3 2 4 2 3 2 3 3 4 4 2 4 2 2 3 3 4 4 4 4 3 3 2 1 3 3 3 3 1 1 3 
1 1 2 3 2 1 3 3 1 1 2 1 3 3 3 2 1 3 2 1 2 2 2 3 2 1 2 2 2 4 2 4 4 2 4 3 2 2 3 3 2 4 3 2 3 3 3 3 2 3 3 3 3 3 2 3 4 2 
3 3 3 1 1 2 2 1 1 1 2 1 2 3 2 2 3 3 3 2 2 2 2 2 3 3 3 3 2 4 4 4 2 2 4 3 2 3 4 2 3 4 3 2 2 4 3 4 4 3 2 3 2 4 4 4 4 4 
1 1 2 1 1 1 2 2 1 1 2 2 2 3 2 2 2 2 3 1 2 2 2 2 1 2 2 2 2 4 2 4 2 1 3 2 3 4 4 4 2 3 4 3 3 4 3 4 2 4 3 3 3 3 3 4 4 2 
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 3 2 4 3 2 3 4 3 2 2 3 2 4 2 3 3 3 2 2 2 2 3 4 4 3 3 
2 3 2 2 1 2 2 2 2 3 3 1 2 2 1 2 2 2 3 1 2 3 3 3 3 3 3 2 1 4 3 3 4 4 4 2 2 3 4 4 2 3 3 2 4 4 4 3 3 2 2 3 4 3 4 3 3 4 
1 1 2 1 1 1 2 2 1 3 3 3 3 3 2 1 1 3 3 1 2 3 3 2 2 3 3 3 3 2 2 2 2 3 4 4 4 4 4 4 1 4 4 4 4 4 4 4 2 2 2 4 2 4 4 4 4 1 
1 1 1 1 1 1 2 2 1 1 2 1 2 3 2 2 2 3 3 2 2 2 3 3 2 3 3 3 2 2 2 3 2  3 2 2 3 4 3 2 4 3 3 3 3 3 4 3 4 2 3 3 2 3 3 3 3 

1 1 2 1 1 1 2 2 1 1 2 1 3 2 2 3 3 3 3 2 2 2 3 2 2 3 3 2 3 4 4 3 2 2 3 2 3 3 4 3 2 3 3 2 2 4 4 3 3 3 3 4 3 3 4 4 3 3 
1 1 3 1 1 1 1 1 1 2 3 2 2 2 1 2 3 3 3 2 2 2 2 3 3 3 3 3 1 4 3 3 3 3 4 4 2 3 4 4 3 4 4 4 4 4 4 4 4 4 3 3 4 4 4 4 4 4 
1 1 3 1 1 1 2 3 1 1 3 2 3 3 2 2 2 3 3 2 2 2 3 3 3 3 3 3 2 4 2 4 3 4 4 4 3 3 4 3 2 4 3 4 3 4 3 4 4 2 3 3 3 4 4 4 3 2 
APPENDIX D. RESEARCH PAPER 1 Quantifying Efforts in Data-Driven 

Conceptual Cost Estimating Models for  
Highway Projects  

Brendon Gardner, Douglas D. Gransberg, and H. David Jeong. Paper submitted to the ASCE 
Journal of Construction Engineering and Management.  

A modern dilemma has emerged in light of ever improving technological advances, explosive 
datacollection efforts do not yield a proportional increase in knowledge. Storing more data than is 
necessary, without receiving any useful additional benefit, is not only resource intensive but also 
requires extra funding to collect and manage it. Data-driven models using historical project 
attributes to estimate future construction costs, such as multiple-regression analysis and artificial 
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neural networks are both proven techniques found in the literature that highway agencies could 
adopt for conceptual estimating. This research noted that literature using these techniques have 
been solely focused on estimating model performance with little to no focus on the level of effort 
required to conduct the conceptual estimate. It is commonly believed that using more input data 
enhances estimate accuracy. However, this paper will test the concept that using more input 
variables than necessary in the conceptual estimate overcomplicates the conceptual model without 
a commensurate increase in accuracy. Conceptual estimates using the minimum amount of input 
data to produce an estimate with a reasonable level of confidence is more cost effective than current 
practices. It allows designers and estimators to focus their time on advancing project development, 
instead of investing time into projects that may never advance past the initial conceptual stage. 
Furthermore, reducing data requirements saves highway agencies time and money on storage of 
unnecessary project information. This paper quantifies the effort expended to undertake estimates 
for both artificial neural network and multiple regression analysis models used for the conceptual 
estimate. The paper concludes that input variables which have a large influence on the final 
predicted cost and require a low amount of effort are desired in data-driven conceptual cost 
estimating models.  
Keywords: Conceptual cost estimating, highway infrastructure, artificial neural networks, 
multiple-regression analysis  

Introduction  
In public works, the budget for a project is often established at a point in project development 
where the estimator has the least amount of design detail from which to compute an estimate (Bode 
2000). Taking federally-funded highway projects as an example, the budget is formally set when 
the project is assigned a federal project identification number (PIN) and included in the Statewide 
Transportation Improvement Program (FHWA 2015; Anderson et al. 2007).  The estimate is 
usually used during early planning stages to conduct initial feasibility studies, and both engineers 
and planners realize that the accuracy of the initial cost estimate is a function of the level of design 
detail available at the time of the estimate. To account for the anticipated change in project scope 
as the development process proceeds, a standard contingency based on a percentage of the total 
estimate is added (Minassian and Jergeas 2009). This kind of estimate is termed a top-down 
estimate because it relies on parametric cost factors such as lane-miles, location, project type, etc. 
rather than a bottom-up estimate whose basis are the quantities of materials needed on the project 
(Kim et al. 2012).    
The conundrum faced by engineers in public works is that in order to receive the authorization to 
expend funds to advance the project to completion the official budget is based on a figure derived 
with the least amount of project-specific technical information (Bode 2000; FHWA 2015). If the 
figure is too conservative, the project may not be selected to advance to the next preliminary 
engineering stage. As a result, it becomes important to take the initial cost estimate seriously and 
utilize the available information that has the highest influence on the bottom-line while not 
allocating precious time and resources to a project that ultimately will not advance. Additionally, 
the time period to conduct the estimate is typically limited in the feasibility stage (Gunduz et al. 
2011), but the estimate requires sufficient accuracy for benefit-cost analysis and prioritizing 
budgets (Anderson et al. 2007). Therefore, the objective of this paper is to explore a solution that 
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can be used to complete critical initial estimates with high impact data that requires the minimum 
level of effort for the estimator to obtain.  

Conceptual Cost Estimating in Highway Agencies  
Conceptual cost estimating (CCE) is the first construction cost estimate completed for a project, as 
shown in Figure 1. At the conceptual stage there is little information known about a project and 
the detailed design has not yet begun. As the importance of the information required for the 
conceptual estimate increases, so too does the need to expend additional design and planning, this 
in-turn extends the project planning period. Further design and planning details can be included in 
later, more confident, estimates.   
  

  
Fig. 1. Construction cost estimating timeline (adapted from Schexnayder et al. 2003)  

Highway agencies cannot afford to over-invest their design time and effort in projects at the 
conceptual stage. If less effort can be expended at the conceptual stage, then an estimator’s time 
can be better applied in the later design estimating stages shown in Figure 1. Any investment in 
the project at the conceptual stage could be rendered worthless if a project is not selected for further 
development following a benefit-to-cost analysis or a needs assessment. In the context of structural 
steel buildings only 15 percent of those that reach the conceptual stage ever get constructed 
(Moselhi and Siqueira 1998).   
CCE techniques currently used by highway agencies vary by state. Byrnes (2002) and Turochy et 
al. (2001) have both completed surveys on cost estimating at the planning stage. These studies 
found that CCE approaches utilized by highway agencies are generally classed into one the 
following three categories:  

1. “cost-per-mile” of typical sections of highway or bridge,  
2. estimating approximate quantities of major work items, or  
3. no documented or uniform method, instead using experience and engineering judgement.   

Despite these techniques developed, CCE at highway agencies still requires improvement. 
Flyvbjerg et al. (2002) investigated 258 public transportation projects and found that 86% of those 
projects had experienced cost growths since the initial estimate, on average they were 28% higher 
than the initial estimate. Further, in 2003, Schexnayder et al. stated that recent publicity has called 
into question the “ability of departments of transportation to forecast accurately and to control the 
final cost of their projects”, this was stated in the NCHRP Synthesis of Highway Practice - Project 
Cost Estimating.  
Data-driven techniques using Artificial Neural Networks (ANNs) and Multiple Regression 
Analysis (MRA) have been frequently suggested in the literature for CCE and show equal, if not 
superior results than those currently used by highway agencies (Bell and Ghanzanfer 1987; Hegazy 
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and Ayed 1998; Moselhi and Hegazy 1992). The performance of these models are well within the 
acceptable estimate range for the planning stage suggested by the American Association of State 
Highway and Transportation Officials (AASHTO) in the Cost Estimating Guidelines (AASHTO 
2013). In 2002 Byrnes found that no state highway agency is yet employing mathematical models, 
NCHRP report 574 (Anderson et al. 2007) reached the same conclusion.    
Both MRA and ANNs link a historical database of project attributes to the actual construction cost 
of each project. These relationships identified within the data can then be used to forecast the 
construction cost of future projects. MRA links the information with a linear equation to the 
construction cost (Turochy et al. 2001). Each attribute is assigned a weight when the linear 
equation is developed such that the error in forecasting the construction cost is minimized. ANNs 
on the other hand use artificial intelligence to find patterns to describe the construction cost from 
a historical database of project attributes (Pewdum et al. 2009). Historical data is used to train the 
ANN model and recognize relationships within the database. This trained model is then used to 
forecast future construction costs by looking for similar patterns.    
No matter the CCE technique employed by highway agencies or suggested in the literature, a 
particular level of project definition (or design effort) is required in order to conduct the cost 
estimate. Sanders et al. (1992) observed this balancing act between efforts expended and estimate 
accuracy, stating “there is an inverse relationship between the accuracy of an estimate and its 
preparation cost. At some point, increased accuracy cannot justify the additional costs incurred.” 
The sooner that the initial estimate is developed, the smaller the level of project definition required 
for CCE with commensurately lower cost and effort. This then means that estimators and designers 
can focus their efforts on projects which are beyond the planning stage and are likely to reach 
construction.   

Data-Driven CCE Models – prior studies  
CCE techniques reviewed in this research include ANN and MRA models, these are both 
commonly suggested in the literature and will be referred to as data-driven CCE models. The 
benefit of data-driven techniques is the ability to use historical project information for forecasting 
and the speed at which this can be achieved. Gunduz et al. (2011) recognized this stating “reliable 
cost estimates are required within a very limited time period at the feasibility stage,” and the 
research in their paper concentrated on the use of ANN and MRA models to produce fast and 
accurate results.   
Performance of data-driven CCE models is subject to variations in model architecture and 
parameters; this includes the input variables used, number of hidden layers and nodes in the ANN 
model, and data-set size. The effects of model architecture and parameters have been studied in 
data-driven CCE models published in the literature (Setyawati et al. 2002; Mahamid 2011; 
Petroutsatou et al. 2012). Bell and Ghanzanfer (1987) selected their final MRA model by building 
many models through trial and error and then selecting the model which produced the least error. 
This technique was used in at least four other studies (Creese and Li 1995; Hegazy and Ayed 1998; 
Gunduz et al. 2011 and Petroutsatou et al. 2012).   
Input variables selected have a large effect on the prediction capability of the CCE model. Bell and 
Ghanzanfer (1987) concluded this using MRA to predict the construction cost of highway projects. 
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The same deduction has been reached by at least two other authors of data-driven CCE models 
(Gunyadin and Dogan 2004; Setyawati et al. 2002). Bell and Ghanzanfer investigated the accuracy 
of the input variables in their research. Gunyadin and Dogan made reference to the selection of the 
input variable types, and Setyawati et al. referred to optimizing the number of input variables to 
achieve better prediction accuracy. Model creators usually only have a one-time commitment to 
collecting the cost predictors (Smith and Mason 1997). If model creators select cost predictors 
which require a large amount of data collection and processing effort then it will burden the 
usefulness of the model as a CCE tool.  
Despite the amount of previous research in data-driven CCE models, none of the work reported in 
the construction literature studied quantifies the effort required to conduct the cost estimate. 
Collection and storage of data from historical projects requires time and resources of which 
highway agencies have a limited quantity. Further cost influencing information gathered later in 
the project life-cycle can be included in more detailed bottom-up design stage estimates.  

Literature Analysis  
Previous authors of data-driven CCE model research have remained silent on the effort to collect, 
store and use databases to conduct the cost estimates. As a result, this research analyzed the 
datadriven CCE models published in the literature to observe how many input variables are being 
used and resultant error. The literature analysis was a starting point of this research to see if 
additional inputs improve estimating accuracy.   
A total of 16 publications were studied with results from data-driven CCE models. Publications 
were selected that involved either ANN or MRA prediction algorithms to output the construction 
cost of the project using input variables at the early design stage. From each of the publications 
both the performance and the number of input variables used to produce their best performing 
model was collected. The results of this research is shown in Table 1. Some publications tested 
both the ANN and MRA techniques which resulted in a total of 20 models for comparison shown 
graphically in Figure 2.  
Performance of both the ANN and MRA models were measured using the Mean Average 
Percentage Error (MAPE). This method is commonly used by authors of data-driven CCE models 
(Petroutsatou et al. 2012; Gunduz et al. 2011; Mahamid 2011; Hegazy and Ayed 1998). Calculation 
of the MAPE is furnished using Equation 1 (Mahamid 2011).   

𝑛𝑛𝑛𝑛 
 100% 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(%) =                                                                                                    (1)  
 𝑛𝑛𝑛𝑛 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 

𝑖𝑖𝑖𝑖=1 

𝑛𝑛𝑛𝑛 = Number of data-points used to test the model  
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 = Predicted construction cost using the data-driven CCE model for the ith project  

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖= Actual construction cost from the historical records collected for the ith project 
Table 1. Construction cost estimating models studied  
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Author  Input 
Variables  

ANN  
estimating 

error  

MRA  
estimating 

error  
Brief Project Scope  

Petroutsatou  et 
 al. (2012)  5  4.65%  −  Tunnels in Greece  
Mahamid (2011)  9  −  13.0%  Highway (various sizes)  
Gunduz et al. (2011)  17  5.76%  2.32%  Light rail track works in Turkey  
Lowe et al. (2006)  12  −  19.30%  Buildings in UK  
Petroutsatou  et 
 al. (2006)  5  −  9.6%  Tunnels in Greece  
Kim et al. (2004)  9  3.0%  7.0%  Residential Buildings in Seoul, Korea  
Gunaydin and Dogan 
(2004)  8  7.0%  −  RC 4-8 story residential buildings in 

Turkey  
Emsley et al. (2002)  5  16.6%  −  Buildings  
Setyawati et al. (2002)  2  13.4%  9.2%  Education Building Construction  
Al-Tahtabai  et 
 al. (1999)  

9  9.1%  −  Highway Construction  

Hegazy  and  Ayed  
(1998)  

10  19.33%  
−  Highway  Construction  in  

Newfoundland, Canada  
Elhag  and  

Boussabaine (1998)  
4  17.80%  

−  School Construction  

Moselhi and Siqueira 
(1998)  

4  10.77%  14.76%  Steel framed low-rise buildings  

Creese and Li (1995)  3  8.24%  −  Timber Bridges  
Sanders et al. (1992)  10  

−  6.0%  Urban Highway Bridge widening in 
Alabama  

Bell and Ghazanfer 
(1987)  

5  
−  17.0%  Highway Construction Maintenance 

projects  

 
  

Note:  −  = indicates that data is not applicable to that publication  
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Fig. 2. Literature analysis of inputs versus error  
The results from the literature analysis in Figures 2a and 2b show that previous publications are 
achieving lower error through more input variables. Both plots in Figure 2a and 2b show 
diminishing returns with a smaller reduction in error as each input variable is added, this is 
highlighted by the best fit curves being negative power curves. The relationship is much stronger 
with the MRA models in the literature with the power curve R2 value being 0.7211. When the 
obvious outlier in Figure 2a is removed then the R2 value in that plot increases to 0.335.  

A weakness of this conclusion is that the literature is for projects of many different scopes. 
Additionally, none of these past studies have converted their input variables into perceived effort, 
this means that effort and performance cannot be directly compared. Instead an assumption of this 
literature analysis is that each input variable requires equal estimating effort. The results of this 
study specifically quantify input variable effort and suggest that not all input variables require the 
same level of effort to compute.      
The requirement to minimize estimating effort for CCE is also recognized in other industries 
outside of construction. Verlinden et al. (2008) created an ANN to calculate the cost of sheet metal 
manufacturing for customers; the research recognized the necessity to provide customers of sheet 
metal a swift quotation, albeit at the cost of possibly reduced accuracy. In another study, Walczak 
(2001) created an ANN to predict a foreign exchange rate. Walczak’s study found there was no 
need to utilize the entire available database and that only a few years of data was necessary to 
provide reasonable confidence. Walczak concluded that this would have a significant effect on 
model development cost savings, where “the cost is not only financial, but also the development 
time and effort.”(Walczak 2001).   

Research Objective  
This paper proposes a new CCE objectives hierarchy, illustrated in Figure 3, to judge data-driven 
CCE models. Previous data-driven CCE models are focused on the prediction accuracy (Objective 
1), but this research investigates the effort expended (Objective 2) in gathering the input 
information for the models.   

  
Fig. 3. Proposed dual-objective hierarchy tree for conceptual cost estimates  

The objective of this paper is to evaluate the effort expended for data-driven CCE models. 
Specifically the paper focuses on two questions:  

1. Can a framework be created to select inputs that help meet the dual-objective goal of 
maximum performance with minimal effort?  

2. Is there an optimum number of input variables that highway agencies should be collecting 
to minimize the effort for data-driven CCE models?   
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The outcomes of this research should help both researchers and practitioners to focus on both 
objectives during the CCE stage, allowing them to estimate the projects construction cost at an 
early stage of project development with the least amount of effort but with the optimal 
performance.   
Data will be furnished from one state highway agency, Montana Department of Transportation 
(MDT) to conduct the research.   

Research Methodology  
To validate the input selection framework and determine if an optimum level of input variables 
exist a combination of perceptional survey data was used with real project data to predict the 
construction cost. The research steps are shown in Figure 4 below. In step 1, a survey was 
conducted to grasp perception on the level of effort required for different inputs to the conceptual 
estimate. The dual-objective input selection method, proposed as part of this research, was then 
utilized in step 2. Next, the estimating error for each model was recorded using the proposed input 
selection order (step 3a) and then it was repeated using the input selection order in reverse (step 
3b). Finally step 4 compares the cumulative perceived effort for each construction cost estimate to 
the estimating error achieved. In this step the proposed input selection method (3a) is compared to 
completing the task in reverse order (3b) in order to validate framework effectiveness.   

  
Fig. 4. Research steps  

Survey  
A survey was conducted at MDT to understand the perceived level of effort required to estimate 
the construction cost of a project at the conceptual stage. Firstly, two days of interviews at MDT 
established the key attributes of a project that influence the construction cost to aid the survey 
development. Following these interviews, and a review of literature, 29 variables were identified 
that have an influence on the construction cost of MDT’s highway projects, these are shown in 
Table 2. The research team then assigned the attributes into one of three categories:  

1. Roadway: an attribute associated with information about the proposed project location.  
2. Design: an attribute determined during the design process.  
3. Construction Administration: attribute is related to the construction activity.  

These categories were selected to reflect the location where the data was being received from at 
MDT. For example the majority of roadway characteristics were generally sourced from the Data 
and Statistics Bureau at MDT which store Geographical Information Systems (GIS) on roadway 
attributes.  
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Table 2. Cost influencing attributes identified at MDT  

Design related attribute  Roadway information attribute  

1  Design AADT  19  Urban or rural project   

2  Design speed  20  Construction  on  Native  American  
Reservations   

3  Start and end stations, length and width  21  Site topography   

4  Intersection signalization and signage  22  Existing surfacing conditions and depths   

5  Horizontal and vertical alignment  23  Number of intersections in project   

6  
Extent  of  changes  to  the 
 existing  24 intersections  Number of bridges in the project scope  

7  Typical section      

 8  Curb, gutter and sidewalk   Construction Administration attribute  
9  Bridge type and complexity    25  Traffic Control - closures or detours   

10  
Volumes of excavation  and 
embankment   

 
26  

Environmental permitting requirements- 
wetlands   

11  
Geotechnical - subsurface 
recommendations   

and  slope  27  
Letting Date   

12  Bridge deck area    28  Context  sensitive  design 
 issues, controversy   

13  Hydraulic recommendations and culverts   29  Contract time   
14  Storm drain extents       

15  Bridge span lengths      

16  Foundation complexity of the bridge      

17  Right-of-way acquisition and costs      

18  Extent of utility relocations and costs      

  
Respondents of the survey were asked, amongst other questions, to answer the following on each 
of the 29 attributes identified:  

1. rate the typical effort required to compute or identify this variable, and   
2. how influential do you believe this variable is on the construction cost of a project? 

The questions were designed with an ordinal (categorical) scale where respondents are required 
to select the most suitable answer as shown in Figure 5 (Fink 2009; Fowler 2009).   
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Fig. 5. Ordinal scale used for the two survey questions  

The survey was distributed at MDT through an email link to all 84 preconstruction personnel that 
were deemed suitably qualified to respond. A total of 35 responses were received with four of these 
excluded as non-responses. This resulted in a 37% response rate. Responses were received from 
all five bureaus and from a large range of job titles. Whilst there is “no agreed-upon standard for a 
minimum acceptable response rate” (Fowler 2009) the researchers were satisfied that the 37% 
response rate reflected the entire population.   

Input Variable Selection  
To meet the dual-objective goal during CCE it was proposed that input variables be selected 
starting with those that require a low level of effort to compute or identify but also have a high 
influence on the construction cost of the project. This is shown in Figure 6 with the input variables 
suggested to be selected in the bottom right hand quadrant.   

  
Fig. 6. Selecting input variables to meet the dual-objectives of CCE  

To validate this selection process the research team combined the perceptive survey results with 
performance of a data-driven CCE model created specifically using projects that the survey 
respondents design and manage at MDT. Two data-driven CCE modeling techniques, ANN and 
MRA, were utilized with databases provided by MDT to predict the construction costs of projects. 
Input variables were systematically added to the data-driven CCE model starting with those in the 
bottom right quadrant of Figure 6 to meet the dual-objectives of the main CCE goal. Further inputs 
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were added based on their distance from the bottom right quadrant in Figure 6, this is explained in 
more detail later on in this paper. In each of the models the performance and total perceived effort 
from all input variables used were recorded.  Results  
Survey Response  
The average results of the survey from 31 respondents are shown in Figure 7, the numbers relate 
to the 29 attributes from Table 2. Respondents rated the effort on a 1-3 ordinal scale whilst the 
influence of this variable on the construction cost was rated on a 1-4 ordinal scale, these scales are 
shown in Figure 5. As such quadrants were arbitrarily assigned on both scales to visually divide 
up the results and aid the input variable selection process. The units on both axis correspond to the 
ordinal response scale from Figure 5, they are referred to as “points” from here on.  

  
Fig. 7 Results of MDT cost estimating survey  

Visually, there are a number of interesting results which can be observed in Figure 7. Firstly, only 
5 of the 29 attributes shown in Table 2 fall in the bottom right quadrant of the plot: attributes MDT 
perceive as requiring a low amount of effort to collect which also have a high influence on the 
construction cost of the project. It was not a surprise that three are roadway characteristics, easily 
identified once a project has been selected and its location confirmed. These characteristics include 
whether the project is going to be in an urban environment, the topography of the road and the 
number of bridges within the limits of the project. There was only one design factor identified in 
the bottom right quadrant.   
Secondly, all the attributes in the top right quadrant of the Figure 7 are design factors. This is 
intuitively logical as design requires significant effort to be expended and the outcome should have 
a large effect on the construction cost. Finally, very few variables occupy the top left quadrant. 
Those that do occupy this quadrant are bordering other quadrants inferring that any attribute 
requiring a significant amount of effort to be expended by MDT is going to have a significant 
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influence on the construction cost of the project. This observation is also reinforced by the fact that 
two-thirds of all variables are in the bottom left or top right quadrant (i.e. variables are either low-
effort/low-influence or high-effort/high-influence variables).  

Case-Study  
The findings from the survey were used to validate the dual-objective input variable selection 
method proposed as part of this research. The research team proceeded to build a data-driven CCE 
model, which has the least amount of effort with suitable performance. As such as many of the 29 
attributes were included in the model, one at a time, starting with the variable closest to the most 
preferred to the least preferred attribute (as shown in Figure 8).The formula to calculate each 
distance was based on the Euclidean distance, and shown in Equation 1 (Danielsson 1980).   

 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷 (𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀)2 

+ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝐵𝐵𝐵𝐵)2                                                (1) where,  

𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = the average perceived cost influence from the survey  
𝑀𝑀𝑀𝑀 = 4, the maximum construction cost influence based on the ordinal survey rating and the ideal 
value as shown Figure 8  
𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖= the average perceived effort from the survey  
𝐵𝐵𝐵𝐵 = 1, the minimum effort rating based on the ordinal survey rating and the ideal value as shown  
Figure 8  
𝐷𝐷𝐷𝐷 = the input attribute being measured, ranges from 1 to 29  
  

  
Fig. 8. Preference for selecting input variables  

A total of 189 pavement preservation projects were provided to the research team from MDT. The 
projects were made available from existing databases and conceptual project reports completed 
during the planning phase of each project. The research team then compiled a database which 
included as many of the 29 input variables for the ANN and MRA model as possible. Because the 
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survey was created for generic project types, some of the project attributes were not relevant to 
pavement preservation projects. For the purposes of this case study 13 input variables relevant to 
pavement preservation were selected.  These were selected based on guidance from MDT 
personnel and are shown in Table 3. An example is the exclusion of right-of-way acquisition costs, 
it was determined at MDT to be very unlikely that pavement preservation projects would involve 
such occurrence.    
Table 3. Input variables selection order and distance from ideal input  

Proposed input variable selection order  
  

Average perceived 
influence  
(points)  

Average perceived 
effort  

(points)  

Distance to  
ideal input  

(points)  
Refer to Equation 1  

19. Urban or rural project  3.48  1.10  0.56  
21. Site topography (steep, flat or 
undulating terrain)  3.26  1.29  0.80  

3. Start and End Stations, Length and  
Width   2.97  1.71  1.25  

1. Design AADT  2.74  1.29  1.29  
7. Typical Section (depths of surfacing and 
aggregate)  3.19  2.03  1.31  

2. Design speed(s)  2.67  1.16  1.34  
4. Intersection signalization and signage  2.87  1.90  1.44  

25. Traffic Control - closures or detours  2.84  2.00  1.53  

8. Curb and Gutter and Sidewalk   2.97  2.13  1.53  
29. Contract Time  2.45  1.58  1.65  

27. Letting Date   2.35  1.29  1.67  
11. Geotechnical - subsurface and slope 
recommendations  3.39  2.65  1.76  

6. Extent of Utility relocations and costs  3.26  2.71  1.86  

  
Input variables were added by selecting them in the order starting with the shortest distance from 
the ideal input variable to the largest distance. The average survey results for the influence and 
effort are shown in Table 3 along with the calculated distance to the ‘ideal input variable’ shown 
in Figure 8. Each time a new input variable was added to the model the MAPE of the model with 
the test data was recorded. To verify the usefulness of the input selection method the process was 
repeated in the reverse order (starting with the largest distance from the ideal input variable).  
To be able to compare the results from all the models, the same 152 projects were used to train 
each model and the same 38 projects were used to test the model and calculate the MAPE. The 
randomly selected 38 test projects accounted for 20% of the database, this proportion of testing to 
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training data was based on previous literature (Petroutsatou et al. 2012; Moselhi and Siqueira 
1998).   

ANN Results  
A commercially available ANN modelling software package was used to train and then test the 
database. Initially, only one input variable with the shortest distance to the ‘ideal input variable’ 
shown in Figure 8 was used to train and then test the first model. Input variables were then added 
to the model one at a time, getting further from the ‘ideal input variable’. Each time the MAPE and 
cumulative effort points of the prediction model was recorded. The process was then repeated until 
all 13 input variables were included in the ANN model. The process was then conducted in reverse 
order by adding input variables in the opposite fashion. Figure 9 illustrates the results of each 
approach.  

  
Fig. 9. ANN performance and effort expended  

Figure 9 shows that when input variables are added in the order suggested by this research the 
model can more quickly reach reasonable accuracy with less effort. It also minimizes the number 
of input variables required to achieve the lowest possible MAPE. The corresponding model 
reached around 25% error with a cumulative effort of 7.5 points. With the reverse order of input 
variable selection a comparable level of error was not reached until around 17.5 to 20 points of 
effort. This is over twice the level of estimating effort for the same performance. Both methods 
show that there is a point where adding additional input variables, or expending more effort, results 
in diminishing returns and little or no improvement in performance in predicting construction costs 
for the additional effort. When the point of diminishing returns is reached the overall goal of the 
estimating model is reached: maximum performance with minimal effort.   
The authors speculate that selecting input variables which require a low level of effort essentially 
means that variable is known to a high degree of confidence at the early estimate stage. Two 
examples are the 'length' of the project and if the project will be in an 'urban or rural' setting. These 
two variables both require a low level of effort, thus are known to a high degree of confidence at 
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the early stage. Because these two variables were also perceived by MDT as having a high 
influence on the construction cost then the input selection process proposed in this research picked 
these two variables amongst the first 6-8 variables.  
On the contrary, design variables require a high level of effort at the early stage. Although they 
have high influence on the construction cost many were excluded from the first 6-8 variables. Most 
design factors do have a perceived high impact on the construction cost, but, at the early stage there 
is a low level of confidence with those numbers. Two such examples are the geotechnical 
complexities and utility replacements required. At the early stage highway agencies only have a 
very vague estimate of those variables, thus the confidence in the top-down number is very low at 
the conceptual stage. However, it is recognized that their designed outcome does have a significant 
impact on the cost. The data inputs for design variables in the conceptual estimating model are 
sourced from project information at the early stage, thus they are not inputs known to a high level 
of confidence and contain plenty of variability from this initial estimate to the final estimate. This 
is unlike variables such as the 'length' or 'urban/rural' input variables which are known to a high 
level of confidence at the early stage and also have a high impact on the construction cost.   

MRA results    
The same database was used with commercial software for MRA. When the process was repeated 
with MRA the rational selection method proposed in this research also proved successful to meet 
both objectives, as seen in Figure 10. This helped to validate the selection process. It is evident 
that the ANN model’s performance was superior to the MRA, 25% error using ANN compared to 
50% with MRA. These errors are both within the range suggested by the AASHTO Guideline to 
Cost Estimating (2013) at the planning stage. The superior performance of ANN is in agreement 
with several data-driven CCE models found in the literature (Petroutsatou et al. 2012; Kim et al. 
2004; Moselhi and Siqueira 1998). However, this conclusion is not universal in the construction 
literature with some authors reporting the opposite findings (Gunduz et al. 2011; Setyawati et al. 
2002). The ongoing debate with both techniques was the reason that this research tested the input 
variable selection framework with both ANN and MRA.    
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Fig. 10. MRA performance and effort expended  

It is interesting to note that with the MRA model using the reverse order of input variables never 
reaches the optimal prediction accuracy of around 50%. Also the regression analysis actually 
performs superior with less input variables and after a point the prediction error starts increasing. 
Without a rational input variable selection method, such as trial and error commonly employed in 
the literature (Hegazy and Ayed 1998; Kim et al. 2004), one may conclude that a given set of data 
is not capable of predicting the construction costs to reasonable accuracy.   

Discussion  
The research in this paper has shown that data-driven CCE models do not need to include all project 
attributes to predict the construction cost to reasonable accuracy at an early stage of project 
development. If highway agencies are going to employ data-driven methods for CCE then the 
implications of this research highlight:  

1. A rational input selection method, such as the one suggested in this paper, can be used to 
yield suitable input variables with low effort and contribute to acceptable performance.  

2. Once highway agencies are confident in the input variables required to estimate the 
conceptual cost of projects, the collection of further information is obsolete. It only 
consumes data storage space and requires time/effort from personnel whose efforts could 
be better applied elsewhere.  

3. The results imply that suitable confidence in estimating the conceptual costs of projects can 
be achieved with lower project definition if the correct input variables are selected.   

The final implication of this study is the most important: at the conceptual stage of a project 
lifecycle, an early estimate with less effort can achieve satisfactory accuracy at the conceptual 
estimating stage. This is better than a slightly more accurate result at a later stage of design 
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development. It should be noted that this research is based on the analysis of perceptional data 
from a single agency and as such, its conclusions cannot be generalized without regard to a specific 
agency’s attribute impact and effort perceptions being checked. Nevertheless, the overarching 
concept of using the high impact/low effort variables should be true for most, if not, all public 
transportation projects.   

Conclusion  
ANN and MRA models constructed for this research both reached the goal with the dual-objectives 
of low effort and high accuracy faster using the input selection method proposed in this research. 
Adding further input variables using either model technique resulted in diminishing returns of the 
model performance. Findings from this research have positive implications for practitioners 
willing to employ data-driven conceptual cost estimating techniques.   
The paper’s primary contribution for both researchers and practitioners is to highlight for the first 
time that while increasing the number of input variables in an early estimate may appear to enhance 
estimate accuracy on an intuitive basis, this is not necessarily true. The MDT case study showed 
that for both the ANN and MRA approaches that adding detail to the model reached a point of 
diminishing returns at roughly 6 to 8 high impact/low effort variables.  
  
  
APPENDIX E. RESEARCH PAPER 2 Stochastic Conceptual Cost Estimating 

of Highway Projects to Communicate  
Uncertainty using Bootstrap Sampling  

Brendon J. Gardner, Douglas D. Gransberg and Jorge A. Rueda. To be submitted to the 
ASCEASME Journal of Risk and Uncertainty Part A.   

Abstract  
Conceptual cost estimating is typically completed early in the project life-cycle when very little 
design work has been completed. Because little information is known at this early stage, the 
estimate usually deviates substantially from the actual construction cost. When expressed as a 
deterministic value, an estimate often leads to a false inference of accuracy by those not familiar 
with the vagaries of conceptual cost estimating, making it difficult for an agency to explain cost 
growth. Communicating the conceptual estimate stochastically allows an agency to produce a 
probability distribution of the likely construction costs and address the level of confidence it has 
in the given estimate. Named probability distributions are readily available for developing a 
stochastic estimate on many commercial software’s. However, instead of fitting available 
distributions, this research generates an empirical distribution to express a cost estimate range. 
Creating empirical distributions eliminates assumptions required for selecting named distributions. 
The stochastic data-driven model developed in this paper combines artificial neural networks and 
bootstrap sampling using 189 highway projects to train and test the estimating model.   
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Keywords: Cost estimating, risk, range estimating, confidence level, stochastic, bootstrap 
sampling, artificial neural network, cost transparency  
  

Introduction  
The development of an effective conceptual estimate can be a challenging task for public owners 
as these estimates are conducted prior to the design phase with minimal scope definition. Despite 
the lack of knowledge about a project at the conceptual cost estimating stage, these cost estimates 
are required by public agencies for statewide fiscal funding requirements (Anderson et al. 2007, 
FHWA 2015). It is known that many highway agencies experience substantial cost growth from 
this initial estimate, shown as the conceptual estimate in Figure 1, to the final construction cost 
(Flyvbjerg et al. 2002; Schexnayder et al. 2003; Chou et al. 2006).   
  

  
Fig. 1. Construction cost estimating timeline (adapted from Schexnayder et al. 2003)  

The difficulty with conceptual cost estimate accuracy is demonstrated in the AASHTO Practical 
Guide to Cost Estimating (2013), which cites the accepted uncertainty of the early estimate in a 
range of -40% to +100% from the initial cost estimate to the final construction cost. That AASHTO 
publication also acknowledges the difficulty in quantifying uncertainty associated the cost at the 
conceptual stage cost. Typically the uncertainty at the conceptual stage is assigned as a percent of 
the construction costs (Molenaar 2005, Byrnes 2002, Turochy et al. 2001). Byrnes (2002) reported 
that state highway agencies add a contingency ranging from 5-45% depending on project type and 
uncertainty; similar contingency factors were also reported by Turochy et al. (2001).  
Reflecting the construction cost as a point estimate (i.e. a specific number) does not portray the 
estimator’s confidence, or lack thereof, in the estimate, nor does it indicate the potential for cost 
growth. Therefore, those using the estimate in the planning and programming process may be over 
confident in its accuracy. The following section discusses the bias and optimism associated with 
point estimates, it then goes on to discuss the benefits of reflecting the construction cost 
stochastically. A stochastic cost estimate is a range of costs with probability levels associated with 
each cost actually occurring.   

Optimism and bias associated with conceptual estimates  
Bias from the estimator and the tendency to be over-optimistic in construction costs has been found 
to directly attribute to construction cost growth. Bias and over-optimism was discovered as one of 
the 18 primary factors contributing to construction cost escalation by Shane et al. (2009). 
Overoptimism is “often viewed as the purposeful underestimation of project costs to ensure that a 
project remains in the construction program” (Shane et al. 2009). In that study interviews were 
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conducted with over 20 public highway agencies to identify the key factors which led to highway 
construction cost escalation.    
Recent literature demonstrates that an optimistic estimate of construction cost can lead to 
inadequate design funds for a project and further exacerbate construction cost growth. Typically, 
the design budget is established as a percentage of the initial construction cost estimate (Jeong and 
Woldesenbet 2012). Therefore if the construction budget is optimistic (low), so too is the design 
budget. Gransberg et al. (2007) investigated the relationship between the design budget and cost 
growth from the initial estimate. The study established that, up to a point, the greater the percentage 
assigned to design, the lower the cost growth measured with respect to the conceptual estimate. It 
therefore follows that an optimistic design budget, assigned as the result of an optimistic 
construction cost estimate, will more likely lead to cost growth from the initial estimate due to 
design activities being underfunded.   
Flyvbjerg et al. (2002) found with overwhelming statistical significance that cost estimates 
presented at the pre-design stage are systematically and intentionally misleading, and not caused 
by error. The study by Flyvbjerg et al. included 258 transportation infrastructure projects from 
different historical periods, geographical regions and project types, with a combined value of $90B. 
Three main reasons for the statistical significance were investigated; these were: economic self-
interest, appraisal-optimism, or misleading forecasts for political reasons to get projects started. 
The conclusion of that research was that the pre-design cost estimates were deliberately low to get 
projects started and hence the reason for 9 out of 10 projects experiencing cost growth.   This paper 
proposes the use of data-driven methods to produce stochastic construction cost estimates and 
increase the level of cost transparency. Using historical project data to forecast costs and assign 
contingencies removes any psychological elements or bias that may be inherent to the estimator. 
Additionally, if the output is reported correctly, it should reduce any deliberate deception from 
project promoters whom omit project risks and other potential costly elements in a traditional point 
estimate (deterministic estimate) in order to get the project started.    

Stochastic range estimating – the objective  
Most highway agencies currently express their conceptual estimate as a point estimate with a 
contingency assigned as a percentage of the construction cost (Molenaar 2005, Byrnes 2002, 
Turochy et al. 2001). The problem with point estimates is that they communicate a false sense of 
confidence in the cost estimate, making it difficult to assess their quality (AASHTO 2013) and 
potentially leading to forecast bias by those using the estimate to make financial decisions (Chelst 
and Canbolt 2012). Firstly, when the conceptual estimate is expressed as a point estimate, it appears 
accurate to those with no knowledge of the limitations of the estimate itself. Hence, there is a 
perceived illusion of control and predictability. Secondly, those using the point estimate in a 
benefit-to-cost analysis or for budgeting, fail to acknowledge the possible extreme values or range 
in numbers that the final construction cost could eventually experience. Finally, Chelst and Canbolt 
(2012) state that there can be tendency for an anchoring bias, where “the forecaster becomes too 
anchored to the first estimate to develop a wide range that is reflective of actual dispersion” of the 
costs. Chelst and Canbolt go on to state that “the preferred technique is to initially focus on 
estimating both good and bad extremes.”   
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Providing an estimate range is often assumed to show less confidence in the cost and forethought 
than a point estimate. However, a probabilistic range actually requires the estimator to draw on a 
wide spectrum of experiences to define a range as well as to explore its associated probabilities 
(Chelst and Canbolt 2012). Point estimates on the other hand simply require specific assumptions 
and corresponding numbers to justify that forecast (Chelst and Canbolt 2012).  
This research investigates a stochastic range estimating method to improve communication of the 
conceptual cost estimate to those that are unfamiliar with its development and limitations. The 
paper’s objective is to explore a method which permits highway agencies to utilize databases of 
historic project information for the following purposes:  

1. To forecast the final cost at the conceptual stage,  
2. To assign a range of expected costs to help communicate the uncertainty associated with 

the conceptual estimate and,  
3. To compare cost estimating transparency of the point estimate to that of the stochastic 

approach.   

The research team worked with data provided by the Montana Department of Transportation 
(MDT) to create a database for estimating the construction cost of pavement preservation projects. 
Real construction costs from completed projects at a highway agency are used to test and validate 
the method presented.   
  
Background  

Holistic risk approach  
There are two problems with the current technique of assigning contingency as a percentage of the 
construction cost estimate. Firstly, the contingency required is not necessarily directly proportional 
to the construction cost; contingency should depend on other factors such as project type and 
complexity (Gransberg et al. 2011). Secondly, if the construction cost estimate is low, then the 
assigned contingency will also be low, further exacerbating the cost growth of the project. On the 
other hand, if the construction cost estimate is high, then the contingency will be too high, 
unnecessarily tying up additional fiscal year funding which might have been used to fund 
additional projects.   
An alternative approach to assigning contingency as a percent of the construction cost estimate is 
to use a ‘bottom-up’ method by creating a project specific risk register. All possible risks, 
likelihoods, and consequences are assigned a possible value and contribute to the overall 
contingency fund for the project. The problem with a risk-register is that at the early stages very 
little information is known about the project, making it difficult to conduct an elemental 
‘bottomup’ estimate of all the risks. Additionally when one conducts a ‘bottom-up’ assessment one 
must still make an allowance for risks that have yet to be identified (Kaplan and Garrick 1981).  
Since the conceptual estimate and its associated risk assessment, are produced at an early stage of 
project development, the allowance for unknown risks would be difficult to quantify. This ‘bottom-
up’ approach should be reserved for later, more confident, estimates when more information is 
known about a particular project, and its risks can be better itemized.    
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An emerging technique, investigated in this research project, is to take a more holistic (‘top-down’) 
approach to assign the contingency (Sillars and O’Connor 2007). Sillars and O’Connor created 
such a cost-risk procedure for the Federal Transit Administration (FTA). This was in response to 
the ‘bottom-up’ risk register method not performing well and lacking the required variability of 
ranges. At the conceptual stage a ‘top-down’ holistic approach intuitively makes sense due to the 
difficulty with identifying all possible risks until the design is complete. The current state-of-
thepractice, assigning contingency based on construction cost, is also a holistic approach, however 
it is directly proportional to the confidence in the conceptual cost estimate.   
Due to improved data storage technology, agencies now have the luxury of data from previously 
constructed projects to assist with assigning the contingencies. This can be done by looking at 
other similar projects in a ‘top-down’ method and recognizing the types of projects that exhibit 
less confidence in the initial estimate; these are higher risk and the contingency assigned should 
be accordingly reflective. The power of this data has already been realized in its ability to estimate 
the construction costs of projects. Data-driven models have been created by numerous researchers 
to conduct construction cost estimates using Artificial Neural Networks (ANN) or 
MultipleRegression Analysis (MRA) (Petroutsatou et al. 2012; Kim et al. 2004; Creese and Li 
1995). More specifically some data-driven models have been created for highway construction 
cost estimating at the conceptual stage and suggested for use by highway agencies (Bell and 
Ghanzanfer 1987; Hegazy and Ayed 1998; Mahamid 2011). These published models use a ‘top-
down’ estimating approach to calculate a point estimate of construction costs.   
This research paper leverages the ‘top-down’ cost estimating approach developed for calculating 
not only the construction cost, but also an associated contingency based on the risk profile of the 
decisions makers. Data-driven estimating models found in the literature generally express the result 
as a point estimate (Sonmez 2008). This research investigates the use of combining ANNs with 
bootstrap statistical sampling to create a stochastic range of the construction costs for highway 
projects.   

Data-driven conceptual cost estimating   
Two data-driven cost estimating methods, ANN and MRA, have been commonly published in the 
literature with proven results for estimating the conceptual costs of highway projects (Bell and 
Ghanzanfer 1987; Hegazy and Ayed 1998; Mahamid 2011). ANNs use pattern recognition to 
forecast future costs based on the historical database of previously constructed projects (Kim et al. 
2004). Multiple-Regression Analysis creates a linear regression equation by assigning weights to 
particular project attributes through the method of least error (Turochy et al. 2001). Future 
construction costs are estimated using the assigned weights from the training set of data to 
complete the equation. Multiple researchers have proven the ability of ANN to produce superior 
results to MRA in the field of construction cost estimating (Petroutsatou et al. 2012; Kim et al. 
2004; Moselhi 1998), some researchers have proven the contrary (Gunduz et al. 2011; Setyawati 
et al. 2002). This research solely focuses on the ability of ANNs, although the concepts presented 
could easily be extended to produce stochastic estimates with MRA or for areas outside of highway 
conceptual cost estimating.   
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The data-driven models presented in the literature for estimating construction costs generally make 
a point estimate (Sonmez 2008). As discussed above, and further emphasized by Sonmez, the point 
estimate provides no information about the level of uncertainty associated with that estimate. 
Contingency is especially critical at the conceptual stage as there is generally more uncertainty 
associated with that estimate, when compared to later design estimates (Sonmez 2008, AASHTO 
2013). As a result the data-driven model developed as part of research is to be combined with 
bootstrap sampling to turn the point estimate output into a stochastic range.    

Bootstrap sampling method  
The bootstrap sampling method provides a simple process to randomly resample an original dataset 
(Chernick 1999). Utilizing the bootstrap method to sample a database enables one to answer a key 
question in data-analysis and statistics: how accurate are the results of the estimate? (Efron and 
Tibshirani 1993; Davison and Hinkley 1997). Efron and Tibshirani (1993), summarized many of 
the bootstrap applications discovered since the 1980s including the ability to create empirical 
distributions, calculating standard errors, integration with regression analysis and confidence 
intervals.  
The bootstrap data-set is created by randomly sampling an original data-set, shown in Figure 2. 
There a two methods to sample the original data-set which is the process labelled ‘(a) sampling’ 
shown in Figure 2 (Efron and Tibshirani 1993; Davison and Hinkley 1997). These two methods 
are:  

1. sampling without replacement (WOR) or,  
2. sampling with replacement (WR).   

  

  
Fig. 2. Bootstrap sampling process (developed from Efron and Tibshirani (1993)) 

Extracting a nominated percentage of projects from the original data-set is sampling without 
replacement (WOR). In this process ‘n’ is defined as the size of the bootstrap sample and ‘N’ is 
the number of data points in the original data-set. In sampling WOR the bootstrap data-set cannot 
exceed the size of the original data-set (N>n). Additionally, every project in the original data-set 
can only occur once in the randomly selected bootstrap data-set. The sample fraction is simply 
defined by f=n/N (Efron and Tibshirani 1993; Davison and Hinkley 1997).   
The second method to sample the projects is with replacement (WR). Once a project has been 
included in the bootstrap data-set then it is returned to the original data-set of projects to enable it 
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to be selected again (Sonmez 2011; Efron and Tibshirani 1993; Davison and Hinkley 1997). 
Sampling WR means that some data in the bootstrap set can appear zero times, some appear once, 
some appear twice or more (Sonmez 2008).   
Davison and Hinkley (1997) argue that sampling WOR is the simplest method, Efron and 
Tibshirani (1993) argue the contrary. If sampling WR is used then provided that the bootstrap 
sample is much smaller than the population size (n << N) then the probability of sample repetitions 
will be small anyway (Efron and Tibshirani 1993). This research tests the sampling WOR method.  
Once the bootstrap sample of projects is created, the construction cost (output) can be calculated 
by modeling, labelled ‘(b) modeling’ in Figure 2. Two modelling methods presented above were 
ANN or MRA to predict the construction cost. Because ANN and MRA are data-driven estimating 
techniques the output will vary with the input of projects selected in the randomly selected 
bootstrap sample. Therefore, a range estimate can be created if there is methodical control of the 
data-set (inputs) going into the data-model to get accordingly varied construction cost (outputs).   
The final step is to iterate, as shown in Figure 2. Iterating the bootstrap process allows one to obtain 
multiple construction cost outputs with different costs. A probability distribution function of the 
construction costs (outputs) can be created either in a discrete method (probability mass function) 
or by converting the discrete outcomes to a continuous function (probability density function). The 
probability distribution function is commonly called a stochastic estimate because the expected 
construction costs have probabilities associated with them (Bedford and Cooke 2001).  
Tsai and Li (2008) used the bootstrap method combined with an ANN to estimate the cost of 
manufacturing ceramic powder. Their study specifically pursued this technique to address the 
small training data-set that they had by creating virtual samples. Tsai and Li’s study found that 
using the bootstrap method to create virtual samples actually reduced the ANN error and made the 
predictions more stable. They argued a benefit of bootstrap sampling combined with ANN 
modeling was the improvement in accuracy when little data was available through the use of virtual 
samples. Instead of stabilizing a small data-set, this study makes use of the bootstrap approach to 
create a stochastic cost estimate, the details of which are covered in the methodology section.   

Stochastic estimating – previous studies  
Kaplan and Garrick (1981) recognized the benefits of a probabilistic curve when quantifying risk 
by stating that “a single number is not a big enough concept to communicate the idea of risk. It 
takes a whole [risk] curve.” The benefit of stochastic estimating has been explored by various 
authors since then, but few in the field of highway construction cost estimating. FHWA, in their 
cost estimating guidance (2007), allow highway agencies to express their conceptual estimates as 
a range with indicated levels of confidence, thus it is logical to draw increased attention of the 
ability of highway agencies to communicate their conceptual estimates through a range.  In 2005, 
Molenaar created a stochastic cost estimating method for Washington State Department of 
Transportation (WSDOT) specifically for projects greater than $100M in cost. WSDOT are now 
successfully implementing this practice. Molenaar concluded that the “stochastic method better 
conveyed the uncertain nature of project costs at the conceptual phase of project development.” 
The stochastic method was trialed on ‘Highway Megaprojects’ and although the method was 
effective, the cost of the process was in the order of $3M for WSDOT due to workshops, 
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development costs and feedback sessions. Molenaar’s research concluded that the benefit was 
better management of public funds and possible gains in public confidence through transparent 
communication. That research solely concentrated on megaprojects and if highway agencies are to 
adopt this method then they need to employ a risk-analyst expert. The research reported in this 
paper instead focuses on typical projects for highway agencies and should not require the 
employment of a specialist to manage.   
Sonmez (2008) used bootstrap sampling WR to calculate a probabilistic conceptual cost estimate 
of a building project. The number of projects used to train the MRA model was 19 (N=19). The 
technique was deemed valid when the one building project, with which the model was validated 
with, was enclosed within the 90% probability level. A total of 1000 iterations were completed 
where the construction cost of the test project was calculated in each iteration with a bootstrap 
data-set of 20 projects. Each of the 19 projects available to make the bootstrap sample was included 
either nil, once, twice or many times to fill the 20 training spots (n=20). Because the bootstrap 
sample was larger than the number of training projects available (n>N) then sampling WR was 
used. Sonmez stated that further studies should include larger data-sets, this paper contributes to 
the limitation outlined by Sonmez through the use of 151 projects in the training database as 
opposed to 19.    
In other fields, researchers used the bootstrap procedure to represent uncertainty for incremental 
cost-effectiveness ratios for endoscopy clinical procedures (Lord and Asante 1999). The authors 
stated that health economists have a “responsibility to present estimates of the degree of uncertainty 
surrounding the results of economic evaluations.”  They indicated that decision-makers place too 
much reliance on point estimate results presented. This communication issue and perceived 
confidence is therefore not only experienced in the construction industry.   
Other techniques to produce a stochastic estimate, without the use of bootstrap sampling, do exist. 
Monte-Carlo simulation can be used to simulate outcomes to produce probability in a commercial 
spreadsheet. In 2004 Sonmez used this approach to create a range estimate using normal 
distribution. However, in that research Sonmez did outline the inherent assumptions regarding the 
distributions and expected errors. This conclusion further supports the use of bootstrap to create 
an empirical distribution as it “enjoys the advantage of not relying on assumptions or calculations 
of the original distributions” (Dupret and Koda 2000).   

Methodology  
To compare the cost estimating effectiveness of the stochastic output with a point estimate, then 
both methods of estimating construction costs were completed using a database of 189 projects. 
Development of the ANN model is described in more detail later in this paper (Results I). The 
differences in the two estimating models are shown in Table 1.   
Table 1. ANN model arrangement for the point estimate and stochastic estimate  

  Point Estimate  Stochastic Estimate  

Number of projects in testing 
database  38  38  
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Number of projects in 
training database  151  121  

Number of iterations  1  100  

Output  Point estimate  Confidence interval  

Validation  MAPE  Actual CN within confidence 
interval  

  
For the point estimate, shown in Table 1, an ANN model was developed using 80% of all possible 
189 projects for the training data-set (151 training projects). Then, this model was tested using the 
remaining 38 projects (38 testing projects). The same training and testing data-sets were next used 
to create the stochastic estimating model. No adjustment to the ANN model architecture, input 
attributes or modeling software were made in order to create the stochastic output; the only 
exception being the projects used to train the ANN model, these projects were randomly selected 
through the bootstrap sampling process introduced in the background section. As shown in Table 
1, a total of 121 projects were randomly selected for each of the 100 bootstrap samples. The three 
main steps taken to create the point estimate and stochastic estimate output are summarized:   

1. ANN data-driven model created to predict construction cost as a point estimate for 38 test 
projects.  

2. Stochastic estimating model created using the base estimating model from Step 1, bootstrap 
samples of 121 randomly selected projects were used instead of the entire training set of 
data. Bootstrap sampling WOR was completed with f=0.8 (i.e. 80% of the database 
randomly selected in each bootstrap sample). A total of 100 iterations were completed 
producing 100 point estimates from the bootstrap samples. The combination of these 
formed the stochastic estimate.  

3. Point estimate and stochastic estimates were compared.   

The error in the point estimate was calculated using the Mean Average Percentage Error (MAPE). 
This method is traditionally used by authors of data-driven conceptual estimating models 
(Petroutsatou et al. 2012; Gunduz et al. 2011; Mahamid 2011; Hegazy and Ayed 1998). Calculation 
of the MAPE is furnished using Equation 1 (Mahamid 2011).   

𝑛𝑛𝑛𝑛 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(%) = 100 %  𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖                                                                                          
(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. 1)  
 𝑛𝑛𝑛𝑛 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 

𝑖𝑖𝑖𝑖=1 

where:  
𝑛𝑛𝑛𝑛 = Number of data-points in the testing data-set   
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 = Predicted construction cost for the ith project  
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𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖= Actual construction cost for the ith project  
The performance of the range estimate could not be measured using the MAPE (Eq. 1) as the output 
was a range of numbers. Instead, for validation of the stochastic estimate, the actual construction 
cost was compared to the range estimate to see if it was enclosed within the maximum and 
minimum extreme values of the confidence interval, this validation technique was summarized in 
Table 1.  
The performance of each estimating method was measured by comparing the actual construction 
cost to the predicted. However, comparing the MAPE from the point estimate model and results 
from the range estimate model were difficult. As such the research team qualitatively assessed the 
ability to communicate the individual uncertainty associated with each project from the point 
estimate output to that of the range estimate output, this was Step 3.  

Data Analysis and Results  
The results section is divided into two parts. In the first part (Results I) the base ANN model is 
developed and results surrounding the point estimate shared. That section also includes the method 
used to select the input variables for the model and how the database was created. In the second 
part, the point estimate is further developed into a stochastic estimating model (Results II).   

Results I: Point estimating model  
A total of 189 projects were made available to the research team from MDT for analysis in various 
databases and project report formats. The databases and project documents included all highway 
projects completed from 2009 until 2013. The projects were pavement preservation with a 
predominant work-type of chip seal, thin lift overlay or mill and fill.  
The authors conducted two days of interviews at MDT to establish the main cost attributes (inputs) 
which could best predict the construction cost at the conceptual stage. Studying previous literature 
on data-driven conceptual cost estimating models yielded four publications most relevant to 
highway construction cost estimating. Mahamid (2011) investigated 9 variables in the data-set 
collected. Al-Tabtabai et al. (1999) also included 9 variables in the data-set collected. Hegazy and 
Ayed (1998) included 10 input variables. Bell and Ghazanfer (1987) included 2-5 input variables 
depending on the specific highway project type. From a review of inputs in those literatures and 
interviews at MDT a total of 17 cost influencing attributes were deemed most relevant to pavement 
preservation projects. These attributes are shown in Table 2.  
  

Table 2. Input variables used in the database  
Input Variables trialed in ANN model  

Urban/Rural Indicator*  Letting date  
Construction on Native American     
Reservations*  

Typical Section (depths of surfacing and 
aggregate) *  

Design AADT*  Curb and Gutter and Sidewalk*  
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Design speed  Geotechnical recommendations*  
Site Topography*  Bridge deck areas*  
Start and End Stations, Length and Width*  Traffic Control – closures or detours*  
Number of bridges in scope*  Right-of-way acquisition and costs  
Intersection signalization and signage* 
Contract time*  

Extent of Utility relocations and costs*  
  

*denotes input variables which were included in final model through trial and error  

  
The database of 189 projects, with the input variables from Table 2, were split into two groups; 
training and testing.  In the published literature typically 20-30% of the data is used to test and 
validate the model (Petroutsatou et al. 2012; Moselhi 1998). For this research 20% of projects, 
which accounted to 38 projects, were retained for testing the performance of the prediction 
capability. The split between the number of projects used to train the ANN model and the testing 
projects was highlighted earlier in Table 1.   
Actual project construction costs required inflation to a base year to reflect the rising construction 
costs. The data was collected for projects over a construction period of 5 years (2009-2013). An 
inflation factor of 3% per annum was applied to all projects from the expected mid-point of 
construction to align with the year 2014 (base-reference). The 3% inflation rate was selected based 
on the historical average inflation rate for projects at MDT and advice from meetings.   
The database was organized in a commercial spreadsheet with 17 input variables shown in Table 
2. A base ANN was created using a common add-on to that software. Trial and error was used to 
determine which combination of input variables most accurately predicted the construction cost. 
This technique is commonly used in literature (Bell and Ghanzanfer 1987; Creese and Li 1995; 
Hegazy and Ayed 1998; Gunduz et al. 2011; Petroutsatou et al. 2012). Table 2 denotes the final 14 
input variables used in the ANN prediction model.   
The 14 input attributes from the 151 training projects were then used to train the ANN model 
against the actual construction costs from the database. Two different artifical neural network 
configurations were trialed. The Generalized Regression Neural Network (GRNN) was found to 
perform superior to the Multi-Layer Feedforward (MLF) network also available in the software. 
The 38 historical projects not included in the training of the artificial neural network were then 
tested in the model. The plot of predicted construction costs versus the acual construction cost for 
the 38 test data-points is shown in Figure 3. It should be noted that a straight line with a slope of 1 
(45 degree angle) passing thorugh the origin represents the point where the predicted construction 
costs is exactly equal to the actual construction cost.  
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Fig. 3. Visual representation of the ANN prediction modeling tool  

  
The performance of the ANN model was calculated using MAPE, shown in Eq. 1. This was 
calculated to be 23% and shown in Table 3, well within the recommended performance in the 
AASHTO Practical Guide to Cost Estimating (2013) at the conceptual stage. The error from each 
of the individual 38 projects are shown in Table 3, these errors are averaged to calculate the MAPE. 
It could be perceived by a project promoter that given a point estimate, the construction cost should 
be enclosed by a range within 23% of that number. However, this is not correct. The MAPE was 
calculated based on the average error from the actual construction cost. If one enclosed a range +/-
23% from the actual construction costs only 24 out of the 38 estimates would fall within this range, 
as shown in Table 3. Hence, this finding shows that the MAPE does not reflect the confidence of 
each individual project. The model produced in this paper much more confidently predicts the 
construction costs of some projects when compared to others. The stochastic estimating method 
produced in the following section creates individual contingencies for each project based on the 
confidence in that project and associated data.   
  

Table 3. Point estimate from the model versus the actual construction cost  

7655   $          687,360    $          618,878   11%  Yes 7648   $       1,610,835    $       

1,577,284   2%  Yes  

Unique project 
number  

Predicted point 
estimate  

Actual construction 
cost  Estimating Error  

Enclosed within +/- 
23% bounds of the 

predicted  
7907   $       2,190,506    $       2,049,786   

  
Yes  
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 7629   $          935,281    $       1,416,928   34%  No  
7622   $       2,931,223    $       2,735,769   7%  Yes 7616   $       2,714,477    $       

2,341,870   16%  Yes  
 7613   $          274,872    $          346,417   21%  Yes  
 7611   $          815,565    $       1,228,248   34%  No  
 7610   $          788,482    $          668,753   18%  Yes  
 7608   $          478,445    $          655,898   27%  No  
 7601   $       2,494,663    $       2,153,096   16%  Yes  
 7471   $          419,294    $          845,535   50%  No  
 7462   $          577,875    $          706,344   18%  Yes  

7444   $       1,956,166    $       1,904,516   3%  Yes 7405   $          136,058    $          

121,409   12%  Yes  
 7306   $          191,456    $          413,068   54%  No  

7108   $          469,082    $       1,173,722   60%  No 6988   $          121,798    $             

85,237   43%  No  
 6974   $       2,732,350    $       3,380,123   19%  Yes  

6959   $          535,376    $          508,032   5%  Yes 6952   $       1,567,018    $       

1,963,090   20%  Yes  
 6948   $          324,069    $          337,096   4%  Yes  
 6944   $          865,742    $          960,662   10%  Yes  
 6942   $          655,190    $          541,157   21%  Yes  
 6927   $       1,431,002    $       1,300,320   10%  Yes  
 6894   $       2,080,816    $       1,469,483   42%  No  
 6811   $          336,661    $          296,926   13%  Yes  

6799   $          211,790    $          182,946   16%  Yes 6795   $          354,359    $          

351,910   1%  Yes  
 6523   $          463,207    $          578,304   20%  Yes  
 6503   $          218,961    $          255,169   14%  Yes  
 6501   $       1,340,614    $       1,044,308   28%  No  
 6499   $          597,541    $          772,972   23%  No  
 6266   $          570,293    $          327,928   74%  No  
 6253   $          440,025    $          656,403   33%  No  
 6237   $          344,405    $          285,501   21%  Yes  
 5752   $       2,218,890    $       1,701,527   30%  No  

5751   $       1,717,133    $       2,663,697   36%  No MAPE (calculated using 

Equation 1)  22.9%    

 

Results II: Stochastic estimating model  
Range estimate results for all 38 test projects are shown in Table 4. These 38 test projects are the 
same projects used to test the point estimate model (Results I). The minimum and maximum values 
were the two extreme values predicted during the 100 iterations of this estimating approach. The 
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probability levels 5%, 15%, 85% and 95% indicate probabilities that costs will be below that value.  
To highlight the ability to use confidence intervals an example is project 7907 shown in Table 4, 
our model predicts a 90% confidence interval that the cost will range between $1,406,550 and 
$2,870,946. Those values are the 5% and 95% probability level costs, thus the subtraction of the 
two probability levels indicates a 90% chance range. Similarly, the 15% and 85% probability level 
costs would provide a 70% confidence interval of construction costs. For project 7907 the actual 
construction cost of $2,049,786 lies within the both the narrower 70% and wider 90% confidence 
interval predicted by the model.   
  

Table 4. Range estimate results for 38 test projects   

Maximum  
Value  

Predicted  
7907 $824,741 $1,406,550 $1,728,648 $2,825,781 $2,870,946 $3,581,856 $2,049,786 7655 $430,625 $467,737 $572,985 $694,898 

$696,662 $717,304 $618,878  
 7648  $542,000  $999,585  $1,199,560  $2,094,691  $2,412,435  $3,556,034  $1,577,284  

7629 $895,547 $922,928 $923,321 $1,126,959 $1,221,602 $1,529,054 $1,416,928 7622 $1,133,263 $1,546,317 $1,568,898 $3,031,642 

$3,032,167 $3,032,169 $2,735,769  
7616 $1,153,138 $1,174,832 $1,628,757 $2,714,176 $2,715,070 $2,737,307 $2,341,870 7613 $161,313 $194,891 $229,911 $301,865 

$329,689 $384,002 $346,417  
 7611  $474,971  $483,203  $529,673  $1,032,264  $1,246,094  $1,456,776  $1,228,248  

7610 $235,422 $488,716 $584,155 $753,068 $801,898 $1,248,959 $668,753 7608 $330,430 $355,491 $420,568 $518,382 $543,090 

$630,549 $655,898  
 7601  $1,440,817  $1,440,837  $2,492,953  $3,431,572  $3,431,577  $4,038,078  $2,153,096  

7471  $316,712  $355,137  $366,945  $558,984  $1,002,218  $2,511,961  $845,535 7462  $344,431 

 $480,753  $548,546  $668,353  $759,549  $1,204,432  $706,344  
 7444  $1,173,390  $1,232,745  $1,580,326  $2,735,104  $3,536,238  $4,051,083  $1,904,516  

7405 $89,920 $104,680 $121,730 $164,815 $185,335 $310,316 $121,409 7306 $144,090 $160,617 $167,621 $234,521 $281,810 

$2,283,585 $413,068  
 7108  $145,940  $372,513  $472,067  $627,791  $666,937  $2,271,069  $1,173,722  
 6988  $97,859  $104,047  $111,191  $148,464  $162,408  $402,573  $85,237  
 6974  $1,550,002  $1,773,396  $1,844,132  $3,065,984  $3,621,122  $3,891,009  $3,380,123  
 6959  $233,175  $308,543  $405,207  $545,208  $554,351  $570,260  $508,032  

6952 $527,431 $603,247 $1,001,401 $2,048,786 $2,319,392 $2,657,287 $1,963,090 6948 $248,460 $270,439 $288,816 $391,078 

$444,432 $1,077,672 $337,096  
 6944  $299,942  $466,895  $524,385  $1,254,101  $1,323,058  $2,891,232  $960,662  

6942 $263,154 $377,331 $502,391 $692,654 $736,706 $766,056 $541,157 6927 $826,662 $913,651 $1,128,157 $1,529,055 $1,529,055 

$3,150,506 $1,300,320  
 6894  $680,576  $749,276  $1,197,166  $2,304,526  $2,959,622  $3,327,156  $1,469,483  
 6811  $299,087  $313,086  $338,888  $605,708  $674,011  $1,238,211  $296,926  

Project  
Number  

Minimum Value  
Predicted  

Probability Level   Actual  
Construction  

Cost   5 %   15 %   85 %   95 %   
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 6799  $154,221  $158,102  $169,601  $214,793  $229,768  $296,274  $182,946  

 
 6795  $241,073  $287,675  $359,852  $545,451  $596,202  $857,057  $351,910  
 6523  $256,790  $362,354  $410,310  $522,215  $551,703  $605,589  $578,304  

6503 $147,859 $169,334 $186,775 $245,650 $528,303 $1,006,085 $255,169 6501 $558,065 $896,055 $906,936 $1,342,951 $1,476,607 

$1,529,052 $1,044,308  
 6499  $387,612  $439,490  $453,757  $615,456  $650,599  $1,382,243  $772,972  
 6266  $200,185  $315,382  $400,045  $661,697  $665,759  $1,173,788  $327,928  
 6253  $143,152  $199,808  $291,538  $556,654  $628,034  $1,359,631  $656,403  
 6237  $183,489  $198,812  $268,941  $385,624  $439,155  $558,939  $285,501  

5752 $1,000,091 $1,255,209 $1,543,764 $4,249,406 $5,036,280 $5,275,446 $1,701,527 5751 $971,781 $1,261,650 $1,541,001 

$2,203,069 $2,502,674 $4,257,199 $2,663,697  

  
From the stochastic estimating results in Table 4 there are some interesting outcomes:  

• 35 of the 38 test projects fall within the minimum and maximum expected extremes 
predicted throughout the 100 bootstrap samples.   

• 27 of the 38 test projects fall within the 5% and 95% expected cost.  
• 18 of the 38 test projects fall within the 15% and 85% expected cost.  

From these results it is apparent that as the confidence range is narrowed then more projects fall 
outside of the range. Thus, using the model developed in this paper, to best represent the 
uncertainty then one should quote both the maximum and the minimum values.   
Figure 4 displays the stochastic estimate for four selected projects. Project 6799 is a chip-seal 
project and is known to a very high degree of certainty. This is shown in Figure 4 by the narrow 
range of expected construction costs. Projects 6952 and 7907 were mill and fill projects with length 
6.2 and 7.5 miles respectively and the final surface was chip-seal surface. Due to the similar 
characteristics these two projects have parallel confidence intervals, the cost of project 7907 is 
higher in both the predicted estimate and actual cost due to the slightly longer length.   
Project 5752 displays the least certainty and this is displayed visually with the widest range in 
expected construction cost. The stochastic ANN model has predicted a drastically different range 
for this project compared to both projects 6952 and 7907, this is despite reasonably similar actual 
construction costs for all three of three projects (5752, 6952 and 7907). Project 5752 was 8 miles 
in length, included asphaltic levelling, asphaltic isolation lift, asphaltic resurfacing lift followed by 
a chip-seal surface. The complexities and unknowns were all high with the other major difference 
being inclusion of bridge work. The modelling process has recognized the many high complexities 
and unknowns when calculating the cost of project 5752 and therefore produced a huge range in 
construction costs.   
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Fig. 4. Visual representation of estimate confidence for four of the 38 test projects  

  
The actual construction costs for each project, shown in Figure 4, fall within the confidence 
intervals for their respective ranges predicted with the model. The four plots in Figure 4 lead one 
to conclude that the distribution of expected construction costs are not constant. If one were to 
assign a distribution, then the assumptions of that named distribution would not work on all 
projects, this further highlights the benefits of the empirical process presented in this paper.   

Discussion  
A limitation of ANN results is that it is essentially a ‘blackbox’ where one cannot easily decipher 
the reason for cost variation. The literature confirms that this is a common disadvantage of ANNs 
(Kim et al. 2004; Hegazy and Ayed 1998). The project costs are estimated based on pattern 
recognition, and perhaps the pattern recognition, or lack thereof, is providing the confidence 
intervals. When more data is added to the ANN then one may become more confident in the range 
of possible project costs.   
In developing a stochastic and point estimating model with the same set of data it has become 
apparent that:   

• The point estimate results provide no rational means to assign an individual contingency 
for each project based on the result. Thus the point estimate provides no improvement to 
the current state-of-the-practice for assigning contingency.   
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• Producing a stochastic estimate visually aided the comparison of expected construction 
costs for various projects.   

• Given the large variations in the empirical distributions then it is apparent that a single 
named distribution could not easily be fitted to all projects to assess their confidence 
levels.   

This research presented here is an example of how a highway agency could embrace estimating 
principle for cost transparency, utilization of existing databases, and to express the actual 
confidence in each estimate. Changing the culture of project estimating from point estimates to 
estimating ranges will require a major attitude shift. “It is more challenging to determine the 
investment in the presence of significant uncertainty [as opposed to point estimates] as to the 
project’s return on investment. It requires a corporate culture and leadership that can tolerate and 
even embrace this ambiguity” (Chelst and Canbolat 2012).   
The commercial software used in this study to train and test the artificial neural network was not 
compatible to bootstrap sampling, as such the iterations were completed manually and it was time 
consuming limiting the iterations to 100. All bootstrap samples were randomly selected. Future 
studies should increase the number of iterations and the size of the data-base for higher confidence 
in the results. Additionally, investigation into optimal bootstrap sampling techniques could be 
conducted, this includes the sampling fraction used and comparison of sampling WOR to WR 
could be investigated.   

Conclusion  
Point estimates are single numbers with no indication of the level of confidence with which they 
have been developed. In later estimating stages, when quantities are known, highway agencies can 
be more confident and can express the estimate in that form. However, for the earlier estimate 
stages, where project scope is less developed, the estimate should be expressed in a manner that 
describes the estimator’s confidence; providing a range does just that. The communication of 
estimate confidence through a range could help remove optimism and bias inherent with 
conceptual cost estimates. Additionally, the power of developing an empirical distribution for 
individual projects highlights a method that highway agencies can use to assign contingency. The 
findings of this research found that not all projects have the same level of confidence, as such 
individual contingencies require a rational basis for their amount rather than a fixed percentage of 
construction costs.   

APPENDIX F. RESEARCH PAPER 3 Rationally 
Selecting data for Highway Construction Cost Estimating 
at the  

Conceptual Stage  
Brendon J. Gardner, Douglas D. Gransberg and H. David Jeong. To be submitted to the ASCE  

Journal of Computing   
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Abstract  
Over the past 30 years there has been little improvement in construction cost estimating confidence, 
despite significant advancement in computing capabilities and data availability. During this period 
the literature reveals a number of highly accurate prediction models, however many are supported 
by databases containing very few data points. The practicality of these models is limited due to 
their narrow scope and lack of defined sampling techniques used to select their data points. Models 
to estimate construction costs at early stages of project development using artificial neural 
networks and multiple regression analysis have been developed for some time, but they are not 
being used in practice by US state Departments of Transportation (DOT). This paper investigates 
how data point selection limits the practical performance of these models and why this is a reason 
they have not yet been implemented by DOTs. A total of 20 conceptual cost estimating models, 
using artificial neural networks and multiple regression analysis, were assessed in this study. While 
a data-driven conceptual cost estimating model may appear accurate, not appropriately sampling 
the data inputs will result in a model with little practical application and therefore not suitable for 
use in industry. This study found that data used to train conceptual cost estimating models needs 
to include attributes reflective of the projects in the total population of data. As a result, this 
research proposes a rational method to sample project data.    

Introduction  
Estimating construction costs at the conceptual stages of project development is critical for 
decision-makers to determine a reasonable project budget and to make decisions regarding the 
project’s ultimate feasibility (Harbuck 2007; Lowe 2006; AASHTO 2013). In addition, DOTs need 
reasonable accuracy in estimating conceptual construction costs to ensure that tentative 
construction programs optimize available fiscal year funding. Conceptual cost estimating (CCE) 
is defined in this research as the construction estimate during early scoping when little project 
definition is available (AASHTO 2013).   

Under-estimating during the CCE stage can result in agencies running short of funds to 
complete its annual construction program. Over-estimating costs can result in too few projects 
being selected for funding in a given fiscal year, this leads to not having enough projects ready and 
advertising them before they are truly ready to let or worse, the loss of federal funding (MDT Cost 
Estimating Procedures 2007).    

The amount of a project’s budget allocated to design was found to directly influence its 
overall construction cost growth from the early estimate (Gransberg et al 2007). Gransberg’s work 
observed that up to a point, the greater the design budget the lower the construction cost growth 
from its initial estimate. Thus, underfunding the design budget yields the potential for construction 
budget overruns. The design budget, a major portion of the preconstruction budget, is typically 
established as a percentage of estimated construction costs (Jeong and Woldensenbet 2012). As a 
result, the need to carefully calculate construction costs at an early stage to ensure an appropriate 
budget for the design and control cost growth to the project becomes even more important.   

A problem during the CCE stage is the “limited information” known about the project 
during the planning stage (AASHTO 2003; AASHTO 2013). Importantly, it is at the CCE stage 
where designers have the most influence on the end project cost. This introduces the “cost 



www.manaraa.com

Final Report – July 2017   

 

      Page |  8
0 
   

      

estimating dilemma” suggested by Becker in 1990 (Figure 1). Confidence in CCE enables 
designers to alter designs and realize savings when they have the ability to influence the cost of the 
project. The cost of construction is “impacted significantly by decisions made at the design stage” 
(Gunaydin 2004).   

  
FIGURE 1  Cost estimating dilemma (adapted from Bode 2000).  

    
Background  
CCE techniques recommended for use by DOTs (AASHTO 2013) are calculated through statistical 
relationships between project definition and historic costs. A survey into the current practices of 
CCE methods at DOTs was conducted by Turochy et al (2001) for Virginia DOT. This was in 
response to “attention from news media and elected officials” due to major increases in highway 
project cost estimates since the planning stage. The responses from nine DOTs found the methods 
generally fell into three categories  

1. “cost-per-mile” of typical sections  
2. estimating “rough” quantities of the major work items, and   
3. no documented or uniform method at all such as the use of experience and engineering 

judgement.   
The same practices were discovered by Byrnes (2002) when he surveyed all 50 DOTs. It was found 
in both studies that no State DOTs are employing sophisticated mathematical models suggested in 
the literature.  

The advancement in digital technology and data storage capacity has meant that DOTs have 
an abundance of data available from past projects for analysis and use for estimating future projects 
costs. Two data-driven techniques popular in CCE literature are artificial neural networks (ANNs) 
and multiple regression analyses (MRA) of which there have been numerous publications over the 
past two decades (Petroutsatou 2012; Gunduz 2011). This research specifically focuses on these 
two techniques referred to as data-driven CCE models from here on throughout this paper.   MRA 
is the development of a linear equation to link independent project variables to the cost (Turochy 
2001). The equation assigns weights to each of the independent data-points to best link the 
contribution of each variable to the construction cost with the least amount of error. Future 
construction costs can be estimated using the same equation weights but with the new independent 
variables.    
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 ANNs do not require knowledge of the link between the construction cost and the variables (Kim 
2004). The model uses artificial intelligence to find patterns within the data-base to link these to 
the dependent variable (construction cost). The ANN model creates layers of arbitrary data to 
transform the input variables to the construction cost. Historical data is used to train the ANN 
model and recognize the patterns, these patterns can then be recognized in the new data for 
forecasting the dependent variable.    

Bell and Ghanzanfer published one of the first MRA models for predicting the cost of 
highway construction maintenance projects in 1987 with a database of 174 projects. When 
validated against test projects it could predict the construction cost to within 17% on average. This 
error is well within the range recommended in the AASHTO Guide to Cost Estimating, for which 
the conceptual estimate should be in the range of -40% to +100% of the final construction cost 
(AASHTO 2013).   

Since Bell and Ghanzanfer published their model more than 15 authors have published 
data-driven CCE models with similar promising results using MRA and ANNs at the CCE stage. 
In 1992 Sanders published an MRA model with only a 6% error on test projects. Creese in 1995 
published an ANN model with 8.24% estimating error for the construction costs of timber bridges.  
In 1998 Hegazy published an ANN model that could estimate the construction cost of highway 
projects in Newfoundland, Canada, to within 19.33% of the actual cost.   

Kim completed a comprehensive study comparing the performance of ANN, MRA and 
case-based reasoning to calculate the construction cost of residential buildings in Seoul, South 
Korea. A total of 530 projects were used in the data-base, far exceeding the number of projects 
used by other authors. The estimating accuracy of the model was 3.0% and 7.0% for ANN and 
MRA models respectively.   

Despite these promising results from the literature no DOT is using a data-driven CCE 
model to assist them in calculating the construction costs of their projects. It is however known 
that CCE conducted by DOTs lack results with high confidence (Chou 2006; Byrnes 2002; Walton 
1997). Turochy et al (2001) concluded that DOTs are not employing computer model techniques 
to improve confidence due to:  

1. Resistance to replace engineering judgment with computer procedures, and   
2. Long term reliance on the skills and experience of planners and engineers.    

One benefit of computer estimation is the ability to remove bias and possible pressure to 
keep estimates under published budget ceilings, a challenge estimators regularly face (NCHRP 
report 574). Flyvbjerb et al (2002) discovered that to enable construction to proceed, 
underestimation is the rule rather than exception for transport infrastructure projects. Computer 
tools using historic project information to predict future construction costs can remove the 
optimism at the CCE stage by relying on real construction data, rather than emotion.   

Literature supports the case that more data in the prediction model results in improved 
reliability and accuracy. When Bell and Ghazanfer created a highway data-driven CCE model with 
MRA using 174 projects their research concluded in 1987 - “larger data sets tend to reinforce the 
reliability of the model”. This judgement is supported by many authors of data-driven CCE models 
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(Setwayati 2002, Gunaydin 2004, Tatari 2010 and Gunduz 2011) where these authors had between 
16 and 74 projects in their databases and used a mixture of ANN and MRA for their prediction 
models.  

In 1998 Elhag and Boussabaine recommended future CCE models should exploit more than 
the 30 training data points they used in their research to improve the model accuracy. Following 
this, in 2002, Emsley created a model with nearly 300 projects to specifically address the 
deficiencies in the ANN created by Elhag and Boussabaine. Other data-driven CCE models created 
with a notable size of database: Kim in 2004 and Lowe in 2006 used 530 and 286 historical projects 
respectively for their data-bases.  

Weaknesses in the size of training data contributing to the limited practical application of 
datadriven CCE models has been suggested but not yet thoroughly investigated. Setyawati et al. 
(2002) recommended that the effects of more data in building and construction estimating need to 
be further studied. This paper aims to contribute to understanding the size of training data used and 
model reliability in relation to the construction industry.   

Objective  
The objective of this paper is to evaluate the use of data-driven CCE models to help determine the 
limiting factor for practical use in industry. As such this paper explores 20 construction CCE 
models using ANN or MRA to determine the impact that the quantity of data utilized for training 
has on model accuracy. More specifically, this research investigates a rational sampling method 
for when the entire data population is not utilized. Of the CCE literature reviewed there were no 
reports on the sampling method used for training or testing the model or size of the total population 
of historical projects available.    

Methodology  
Literature on published CCE models involving ANN and MRA were reviewed. It was important 
to identify only models that were relevant to this study. Three criteria were used to ensure this:   

1. the study is related to the construction industry  
2. input variables are obtainable at the early design stage,   
3. the output variable is  a construction cost estimate of the project.   

If the input variables of the data-driven CCE models were simply the bill of quantities then it was 
deemed a bottom-up or a detailed estimate of the construction cost and these models were excluded 
from the study.   

A commercial search tool for document content (Bazeley and Richards 2000) was used to 
organize the publications and record the analysis. A broad search was conducted initially of all the 
collected publications. The number of case studies was then reduced to only 16 publications 
containing 20 data-driven CCE models with the necessary information to conduct an effective 
content analysis. The accuracy of the data-driven CCE models and the number of data points used 
were recorded for comparison and to investigate alignment with literature suggestions on this topic.    
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Results  
The data gathered from CCE publications are shown in Table 1 and outline the brief scope for the 
types of projects selected. Some publications analyzed their database using both ANNs and MRA 
to compare the relative performance of the two different techniques, whilst others just performed 
one technique. The advantages and disadvantages of the two different CCE modelling techniques 
is not discussed here. However, it is noted that some developers of data-driven CCE models 
concluded that ANN performs superior when compared to MRA for accuracy (Petroutsatou 2012; 
Kim 2004; Moselhi 1998), others determined the contrary (Gunduz 2011; Setyawati 2002). All 
authors were however unanimous in agreeing that ANN and MRA techniques are promising to 
complete CCE going forward in in the construction industry.   

The error in the data-driven CCE models collected for comparison was calculated using the 
same method, Mean Average Percentage Error (MAPE) of the testing data. This method is 
commonly used by authors of data-driven CCE models (Petroutsatou 2012; Gunduz 2011; 
Mahamid 2011; Lowe 2006; Kim 2004; Gunaydin 2004; Emsley 2002; Setyawati 2002; Al-Tahbai 
1999; Elhag 1998; Hegazy 1998). Calculation of the MAPE is furnished using Equation 1 
(Mahamid 2011). Where authors had not used this method our research team recalculated the error 
to enable direct comparison.  

𝑛𝑛𝑛𝑛 
 100 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(%) =                                                                                                         (1)  
 𝑛𝑛𝑛𝑛 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 

𝑖𝑖𝑖𝑖=1 

where:  

𝑛𝑛𝑛𝑛 = Number of data-points used to test the model  

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 = Predicted construction cost using the data-driven CCE model  

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖= Actual construction cost from the historical records collected  
  

TABLE 7 Construction cost estimating models studied  
CCE  
literature  

Year 
published  

Data 
points  

ANN  
estimating 
error  

MRA  
estimating 
error  

Brief Project Scope  

Petroutsatou et 
al. (18)  

2012  149  4.65%  −   
  

Tunnels in Greece  

Mahamid (29)  2011  131  −  13.0%  Highway (various sizes)  
Gunduz et al.  
(17)  

2011  16  5.76%  2.32%  Light rail track works in 
Turkey  

Lowe et al. (3)  2006  286  −   
  

19.30%  Buildings in UK  

Petroutsatou et 
al. (31)  

2006  149  −  9.6%  Tunnels in Greece  
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Kim et al. (12)  2004  530  3.0%  7.0%  Residential  Buildings 
 in Seoul, Korea  

Gunaydin and 
Dogan (9)  

2004  30  7.0%  −  RC 4-8 story residential 
buildings in Turkey  
(limited to structural skeleton)  

Emsley et al.  
(26)  

2002  288  16.6%  −  Buildings  

Setyawati et al.  
(23)  

2002  41  13.4%  9.2%  Education  Building  
Construction  

Al-Tahtabai et 
al. (30)  

1999  40  9.1%  −  Highway Construction  

Hegazy  and  
Ayed (16)  

1998  18  19.33%  −  Highway Construction in 
Newfoundland, Canada  

Elhag  and  
Boussabaine  
(25)  

1998  30  17.80%  −  School Construction  

Moselhi  and  
Siqueira (28)  

1998  34  10.77%  14.76%  ‘Typical’ steel framed low-rise 
buildings  

Creese and Li  
(15)  

1995  12  8.24%  −  Timber Bridges  

Sanders et al.  
(14)  

1992  11  −  6.0%  Urban  Highway  Bridge  
widening in Alabama  

Bell  and  
Ghazanfer  
(13)  

1987  174  −  17.0%  Highway  Construction  
Maintenance projects  

− = data not applicable to that publication  

Since Bell and Ghazanfer concluded that “larger data sets tend to reinforce the reliability 
of the model” DOTs investigating the possibility of data-driven cost estimating would expect equal 
if not more training data to be used in the data-driven CCE models for reliability and confidence. 
Figure 2 shows that only three authors in the study population used more than the 174 historical 
construction projects that Bell and Ghanzanfer used in their data-driven CCE model in 1987. This 
is surprising given the explosive computing capabilities and data storage capacity that has occurred 
since Bell and Ghazanfer published their results. Of the data-driven CCE models studied six 
authors reached the same conclusion as Bell and Ghanzanfer in 1987, yet there are still many 
published models using very few historical construction projects in their ANN or MRA analysis.    
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FIGURE 2  Timeline showing the number of historical projects used in data-driven CCE 

models.  
Literature from data-driven CCE models support the hypothesis that lack of data will result 

in unreliable CCE (Bell and Ghanzanfer 1987; Elhag 1998; Setwayati 2002; Gunaydin 2004; Tatari 
2010; Gunduz 2011) and could therefore be a reason for limited industry use. However, findings 
from the quantitative content analysis of the 20 data-driven CCE models investigated in this study 
show when the accuracy of the prediction model is plotted against the number of data points, in 
Figure 3 there is little to no trend. The arrow shows the direction of the trend expected from 
literature findings. There is an unexplained cluster of points in the bottom left of the plot; these 
case studies are circled and report high accuracy with a low number of data points used.   

  
FIGURE 3  Accuracy of data-driven CCE models published and the number of data points 

used.  
Literature suggests that increasing the data-base within the CCE models will result in 

improved reliability and accuracy (Bell and Ghanzanfer 1987; Elhag 1998; Setwayati 2002; 
Gunaydin 2004; Tatari 2010; Gunduz 2011). This is conflicting with results from the quantitative 
content analysis shown in Figure 3. An explanation for this could be that these data-driven CCE 
models have been built for projects of very narrow scope.   
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Creese (1995) created a model specifically for timber bridges using only 12 projects. 
Sanders (1992) limited scope of their data-driven CCE model to bridge widening only, using 11 
projects. Sanders recognized that the model was only useful for interstate bridge widening’s stating 
that the “model presented in this report obviously has very limited application.”   

Gunduz (2011) created a model for light rail track works with only 18 projects and 
achieving nearly 2% prediction accuracy. Validation of the light rail model was based on only two 
projects. Additionally the light rail model estimated the trackworks portion of the light rail projects 
only and did not account for other infrastructure in the project (Gunduz 2011).   

Data-driven CCE models that are only accurate for a very narrow scope of work do not 
provide general utility due to the extremely limited group of projects on which they can be applied. 
Typical DOT projects range in scope from simple to complex and would therefore require many 
different data-driven CCE models to meet their needs. Furthermore, even if the models could 
theoretically be built, many if not most would not contain enough data points to be reliable.   

It leads one to suspect that CCE publications using a small number of data points in their 
analysis may not have included the entire population of historical projects for the defined scope 
and purpose of the estimating model. While the literature does not fully explain the rationale for 
not using the entire population, there are potentially two practical reasons for this:   

1. the researchers did not have access to the complete agency project databases, or   
2. the effort of collecting each project was significant and tedious resulting in a small 

number of historical projects used in the analysis.   
Of the CCE literature reviewed there were no reports on the sampling method or size of the total 
population of historical projects used for training or testing the model.   

Discussion of Results  
Literature study supports the hypothesis that increasing the number of training data points in CCE 
models improves the accuracy and reliability (Bell and Ghanzanfer 1987; Setwayati 2002; 
Gunaydin 2004; Tatari 2010; Gunduz 2011). However a quantitative content analysis of 20 
datadriven CCE models found no trend in the improvement of performance with increased number 
of data points. Instead, this study found that some estimating models were reporting very accurate 
results using few data points to train their data-driven CCE models. Further analysis revealed that 
these models may be of very narrow scope, limiting the practical application for use by DOTs.  

Published work in the manufacturing (Bode 2000) and aeronautical industry (Rajkumar and 
Bardina 2003) reached the same conclusion; more data improves accuracy of the data-driven 
model. In these fields more data used in training produced improved predictions, however this 
improvement had diminishing returns after a point. Rajkumar and Bardina produced over 7000 
data points in the laboratory for their ANN model studying aerodynamic coefficients.   

The challenge with data collection in the construction industry is the availability of data. 
Historical data used in CCE models comes from completed projects which can cost millions of 
dollars each. The number of projects that can be included in the database is limited to those 
completed each year, which is often quite low due to the high costs of each. More importantly, 
each construction project is normally unique in many ways due to the scale of the transportation 
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infrastructure. Unlike products in the manufacturing industry, data cannot simply be regenerated 
in a laboratory thousands of times. The effort required to collect construction project data produces 
the need for a rational data selection method, allowing an individual to accurately represent the 
entire project population with a sample.   

This research next investigates and then proposes a possible sampling method by studying 
the distribution of key attributes in a project population to rationally sample the data. The purpose 
of this is to propose a method going forward for sampling the data to improve model credibility. 
Such a method could increase the applicability of data-driven CCE models for DOTs.   

Rational Sampling Method  

Proposed Technique  
A rational sampling method should be used to select data-points for data-driven CCE models when 
the entire population of data is not going to be utilized. This ensures that the data sample 
appropriately represents the population being modeled, and information is not unintentionally 
misleading. The proposed technique is shown in Figure 4. First the population of historical projects 
is defined in terms of scope and size. Defining the scope of the project allows readers and 
practitioners to understand what the data-driven CCE model can be used for (it’s purpose). It is 
also important to understand the sample of projects actually used in the prediction model relative 
to the total population. This is similar to reporting on a non-response rate by statisticians when 
completing surveys (Dillman et al; Fink and Fowler).  
  

  
FIGURE 4  Proposed rational sampling steps.  

The distribution of key input variables must also be studied. These are anticipated to be 
input variables that have the greatest contribution to the end accuracy of the model. Not selecting 
a representative distribution of key attributes in the sample may limit the practical application of 
data-driven CCE models for predicting the construction cost of the population in the future.   

Next, if the entire population of data is not going to be used in the CCE model then a sample 
size needs to be nominated. It is justifiable to not use the entire population of data due to computing 
limitations or time and effort restraints to collect the entire database for all attributes, especially 
when the population is large with a broad scope. Finally the distribution of key attributes in the 
population needs representation in the sample to be reflective of the population. To demonstrate 
how this rational method could be applied an illustrative example is provided in the following 
section using an ANN data-driven model.  
Illustrative Example  
Step 1: Define the population:  A total of 850 projects were made available to the research team 
from Montana DOT for analysis. This data-base included all highway projects completed from 
2007 until 2015. The population was further defined to pavement preservation projects only. This 
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left a total of 431 historical projects available. Five consecutive years of projects in the design 
phase from 2009-2013 were selected and the population further defined to chip seal, thin lift 
overlay or mill and fill projects, the three main major work-types, all less than $5M in value. A 
total of 226 projects remained for analysis – this was our research population of data.   

Step 2: Distribute key input attributes:  The database was organized in a commercial spreadsheet 
with nine input variables shown in Table 2. A base ANN was created using a common add-on to 
that software. The ANN software was used to test which of the nine input variables were key 
influencers of the construction costs. This was completed by constructing an ANN model to predict 
the construction cost using the entire population of 226 projects. A randomly selected 20% of the 
data was used as a test set, in the published literature this is usually selected as between 2030% 
(Petroutsatou 2012; Moselhi 1998). Prediction of the construction cost was found for this database 
to be most sensitive to two main input attributes: the highway classification and the length of the 
project. The distribution of these two attributes across all 226 projects was analyzed visually so 
that when samples were taken within the population they could be appropriately represented.  
TABLE 2  Input variables used   

Highway Classification*  Surface Type  

Let Quarter  Urban/Rural Indicator  

Contract Time  Length*  

Location (District)  Roadway Width  

Scope  Total Construction Cost [Output]  
*denotes attributes analyzed  

Step 3: Represent the population in the sample:  A test sample was collected first to separate it 
from any data used to train the model, not doing so would undermine testing results of the 
datadriven CCE model. A test set of 57 projects was nominated in this example (25% of the total 
population), leaving a possible 169 projects to train a model. The 57 projects were selected and 
removed for testing by iteratively selecting projects until distribution of the two attributes aligned 
with the distribution in the entire population. Selecting test data reflective of the population will 
test the true performance of the cost estimating model against its intended end-use. Selecting test 
data with this consideration has been previously ignored in data-driven CCE models studied in this 
research.  

Next, a control sample of 85 projects were selected from the remaining 169 available 
projects in the training data-set. This was completed with the same method of selection as the test 
data, by iteratively selecting projects until the distribution of highway classification and length 
matched that of the population. The distribution of projects representing each attribute for the 
population, control sample and test sample is shown in Figure 5a.   

For the purposes of validating this method two additional samples of 85 projects were 
selected from the 169 possible training projects. In each of the samples one of the attributes was 
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improperly represented relative to the control sample. The highway classification was 
misrepresented in Figure 5b (Sample I) and the lengths of the projects were misrepresented in 
Figure 5c (Sample II) relative to the control sample.    

  
FIGURE 5  Distribution of Sample I, II and III based on three key input variables.  
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Results:  The nine attributes from the 169 remaining historical projects were then used to train the 
ANN model against the actual construction costs from the database. Two different artifical neural 
network configurations were trialed. The Generalized Regression Neural Network (GRNN) was 
found to perform superior to the Multi-Layer Feedforward (MLF) network also available in the 
software. The trained data is shown in Figure 6a. The 57 historical projects not included in the 
training of the artificial neural network were then tested in the model. The plot of predicted 
construction costs versus the acual construction cost for the 57 test data-points is shown in Figure 
6b.    

  
FIGURE6  (a) Training the artificial neural network (b) Validating the artificial neural 

network with the test data.  
The MAPE for the test 57 projects was 41.6%. Further improving the accuracy of this 

model was not the goal here, so research into sampling this population of 169 training projects 
continued. A separate model was trained and tested for the Control Sample, Sample I and Sample 
II. The same 57 projects were used to the test the error of these trained models.   

Results of all four ANN models created are shown in Table 2. It was not surprising that no 
single sample out-performed using the entire population to predict the construction cost. This is in 
agreement with literature, from the construction industry and other fields, that states the use of 
more data improves the accuracy and reliability of the model (Bell and Ghanzanfer 1987; Setwayati 
2002; Gunaydin 2004; Tatari 2010; Gunduz 2011; Rajkumar and Bardina 2003; Bode 2000).   

TABLE 2  Error in the testing data  

Sample  MAPE with the test data  

Entire Population (169 projects)  41.6%  

Control Sample (85 projects)  60.6%  

Sample I (85 projects)  61.5%  

Sample II (85 projects)  76.3%  
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It was observed that Sample I performed almost as well as the control sample. This is 
unusual because the distribution of the highway classifications in the sample did not match that of 
the population. On the other hand Sample II performed much worse at predicting the construction 
cost in comparison to Sample I and the Control Sample. On visual inspection of Sample II (Figure 
5c) the distribution of length attributes was much more significantly misrepresented than the 
highway classifications in Sample I (Figure 5b).   

This finding suggests that key attributes of the population only need sufficient 
representation in the sample data-base and do not need to exactly match that of the population. 
Further research needs to be completed to find a relationship between the level of representation 
in the sample required to appropriately predict the construction cost without using the entire 
population of data.   

Other industries are focusing on “big-data” for the data-analytics and decision analysis. The 
transportation industry is currently lagging behind in its use of historical data, specifically in the 
area of cost estimating. Data-driven techniques for CCE of highway projects have proven results 
in the literature. However, when DOTs are searching for published data-driven CCE models they 
need to be aware of the limits to their practical application; a data-driven CCE model may appear 
to perform well but without rational sampling of the data and suitable scope definitions a DOT 
cannot be confident in these techniques.   

Conclusion  
Literature from both construction and manufacturing industries supports the concept that more data 
increases the accuracy and reliability of data-driven CCE models (Bell and Ghanzanfer 1987; 
Setwayati 2002; Gunaydin 2004; Tatari 2010; Gunduz 2011, Bode 2000; Rajkumar and Bardina 
2003). Despite this widely held belief, a content analysis of 20 data-driven CCE models revealed 
that some models had a very low prediction error despite using few projects to train the model. A 
reason for this result is the narrow scope of the projects included in the database and lack of test 
data. These two attributes make the use of data-driven CCE models undesirable for use by DOTs.  
Despite the small data-bases in the CCE models, literature has remained silent on methods used to 
select the data used. To help improve the validity of CEE models for future industry use, this paper 
suggests a rational method to effectively represent a database without using all data points. An 
illustrative example using artificial neural networks was provided to demonstrate how such a 
method would be applied in practice. It was found that key attributes need sufficient representation 
in the sample of data.   

Regardless of the vast improvement in computing technologies over the past 30 years, no 
great advancement in CCE accuracy has been made, preventing DOTs from using these 
technologies within their work. This paper found contributing reasons for this decision to be that 
many published data-driven CCE models have a very narrow scope, lack of confidence in the sizes 
of some data-bases used and no sampling method used for selection of projects.   
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